

COLONEL FRANCIS BACON LONGE, C.B.,R.E.

## RECORDS

of THE

## SURVEY OF INDIA

Volume II

$1910=11$

PREPARED UNDER THE DIRECTION OF
Colonel S. G. BURRARD, C.S.I., R.E., F.R.S.
Surveyor General of India


## CONTENTS.

## PART I.-TOPOGRAPHICAL SURVEY.

REPORTS FROM THE NORTHERN CIRCLE.


REPORTS FROM THE SOUTHERN CIRCLE.

| No. 5 Patity | ... | ... | ... | ... | ... | ... | ... | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. 6 Pabty | ... | ... | ... | - | $\ldots$ | ... | [.0 | 11 |
| No. 7 Party | ... | ... | ..- | ... | ... | ... | ... | 12 |
| No. 8 Party |  |  |  |  |  |  |  | 23 |

REPORTS FROM THE EASTERN CIRCLE.

| No. $10 \mathrm{Pabty}^{\text {a }}$ | ... | ... | ... | ... | ... | ... | $\ldots$ | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. 11 Party | ... | ... | $\ldots$ | ... | ... | .. | ... | 17 |
| No. 12 Pabty | ... | ... | ... | ... | ... | ... | ... | 18 |

TABLE I,-OUT-TURNS OF DETAIL SURVEY ... ... ... ... 21 TABLE II-DETAILS OF TRIANGULATION AND TRAVERSING ... ... 22 TABLE III.—COST—RATES OF SURYEY ... ... ... ... ... 23

PART II.-GEODETIC SURVEY.
No. 13 PARTY-ASTRONOMICAL LATITUDES ... ... ... ... 24
No. 14 PARTY-PENDULUM OPERATIONS
29

PAKT III.-TRIANGULATION.
No. 15 PARTY ... ... ... ... ... ... 38

PART IV.-TIDAL OPERATIONS.
No. 16 PARTY ... ... ... ... ... ... ... 48

PART V.-LEVELLING.
LETELLING OF PRECISION ... ... ... ... ... ... $\mathbf{6 5}$
No. 17 PARTY ... ... ... ... ... ... ... 60

PART VI-MAGNETIC SURVEY.
No. 18 PARTY

PART VII.-REPRODUCING OFFICES.
PHOTO.LITIIO. OFFICE

## ILLUSTRA'TIONS.

portratt of colonel honge, c.o., r.e.

## INDEX MAPS.

(At end of Volume).

1. INDEX TO MODERN SURVEYS, NORTHERN CIRCLE.
2. " $"$ " SOUTHERN $"$
3. "" $\quad " \quad$ SHEÉTS"
4. INDEX TO THE SHEÉTS OF THE "INDIA AND ADIACENT COUNTRIES" SERIES, SCALE $\frac{1}{1,000,000}$.
5. INDEX TO THE DEGREE SHEETS OF INDIA.
6. INDEX TO PUBLISHED MAPS ON THE SCALE OF 1 INCH=1 MILE, NORTHERN CIRCLE.
7. INDEX TO PUBLISHED MAPS ON THE SCALE OF 1 INCH $=1$ MILE, SOUTHERN CIRCLE.
8. INDEX TO PUBLISHED MAPS ON THE SCALE OF 1 INCH $=1$ MILE, EASTERN CIRCLE.
9. INDEX TO THE TRIANGULATION DEGREE CHARTS OF INDIA.
10. INDEX CHART TO THE GREAT TRIGONOMETRICAL SURVEY OF INDIA.
11. " " $\quad$, MAGNETIC SURVEY OF INDIA.

APPENDIX.
LIST OF SURVEY OF INDIA PUDLICATIONS ... ... ... Pages.

## RECORDS OF

THE SURVEY OF INDIA.

## PART I.-TOPOGRAPHICAL SURVEY.

## NORTHERN CIRCLE.

(Vide Inder maps 1 and 6).
Five field parties worked in this circle for the last time; No. 9 Party having now been transferred to the Eastern Circle, all three circles are now composed of four parties each.

During the past field season 27,529 square miles were surveyed consisting of 一

| 15,594 | miles of | 1 -inch | Original survey. |  |
| :--- | :--- | :--- | :--- | :--- |
| 7,259 | $"$ | $"$ | 1 | " |
| Re-survcy. |  |  |  |  |
| 3,584 | $"$ | $"$ | 1 | " | Supplementary survey.

The Riverain detachment carried out 436 linear miles of main and 1,984 miles of minor traverse.

The circle remained during the year under the superintendence of Colonel W. J. Bythell, R.E.

No. 1 PARTY (KASHMIR).
By Majon C. H. D. Ryder, D.s.O., R.E.
The head-quarters of the party remained at Srinagar (Kashmir) during Perbonnel.
Imperial Officers.
Major C. H. D. Ryder, D.S.O., R.E., in charge from luth April 1911.
Brevt.-Major E. T. Rich, R.E., in charge from 8th November 1910 to 9 lh April 1911.
Lieutenant J. D. Campbell, R.E., in oharge up to 7th November 1911.
Lieutennat A. A. Chase, R.E, attached up to 31 st December 1910 and from lat March to 24th September 1911.
Lieutenant K. Mason, R.E., attaobed from 1st April 1911.

Provincial Officers.
Mr. T. W. Babonau up to 7th November 1910.
Mr. H. H. B. Hanby.
Mr. D. K. Rennick from 13th Mareh 1911.
Mr. R. C. Hanson.
Mr. W. J. B. Miller.
Mr. W. P. Hales up to 2nd March 1911.
Mr. Jiya Lal from lat November 1910 to 19th May 1911.

Uppor Subordinate Service.
Mr. Sher Jeng, Khan Baludur, from 10th De. comber 1910 to loth Soptember 1911.

Mr. Natha Singh, Rai Sahib.
Mr. Lal Singh, Rai Babadur, from lst November 1910.
Mr. Mahindar Singh, Probationer, up to 31st May 1911.
Mr. Molnommad Husain Kbau, Probationer, up to 3lst Nay 1911.

Lowor Subordinate Service.
25 Survejors, ets.
survey lying entirely in the Jhelum valley in Kashmir Province of Kashmir State varying from the level swampy valley to the high ranges of the Pir Panjāl, Kazināg, etc.

Operations in the field commenced in March 1911 and will continue till middle of October.

During the previous winter the party remained at Mussooric doing map-drav. ing.

Topography. The area surveyed on the scale of 1 inch $=1$ mile was 3,514 square miles, the party being divided at first into 3 camps urder. Lieutenant Chase, Messrs. Hanby and Hanson; afterwards the latter two alone had camps, there only being 20 plane-tablers at work.

The following sheets were nearly completed and will be finished in October 1911:-
$43 \frac{F}{11,12,16,18}$
$43 \frac{\mathrm{~J}}{3,4,7,8,13,12,18}$
$43 \frac{\mathrm{~K}}{8,13}$
43
$\frac{\mathrm{~N}}{4}$
43
$\frac{0}{1}$
in all 15 sheets. Of these only 10 had been triangulated in advance.
Triangulation.-Lieutenant Mason and Mr. Rennick commenced, and afterwards Lieutenant Chase and Mr. Miller were also started on triangulation, a tctal area of 3,079 square miles having been completed up to date. Of this 1,829 square miles is in advance for next season.

Fair mapping.-During last winter the following sheets were submitted for publication :-
$43 \underset{1,2,9,4,6,0,7,9,0,10,11,13,14,15,16}{a}$
$43 \frac{\mathrm{H}}{1,2, \mathrm{\theta}}$

No. 2 PaRTY (PUNJAB).
By Brevet-Major E. T. Rifi, R.E.
The head-quarters of the party remained at Sialkot throughout the field

Personnel.
Imperial Officers.
Brevet-Major E. T. Rich, R.E., in charge from 15th Aprii 1911.

Captain M.N. ManLeod, R.E., in cherge up to 10th March 1911.

Lieutenant J. D. Campbell, R.E., attached from 8th November 1910 to 10th March 1911 and from 15 th April to l4th July 1911; in charge from 11th March 1961 to 14 th April 1911.

Licatenant C. M. Thompson, I.A., attached up to 20th Marol 1911.

## Provincial Officers.

Mr. T. W. Babonau from 8th November 1910.
Mr. F. B. Powell.
Mr. W. J. Newland up to 18th April 1911.
Mr. Kanak Sinerh.
Mr. R. E. Saubolle, from lst October 1910.
Mr. E. C. O'Sullivan.
Mr. J. McCraken from 9th January 1911.
Mr. Jiya Lal from 20th May 1811.
Upper Subordinate Service.
Mr. Chuni Lal Kapur, Probationer, from 1at Octolier 1010 to 10th Auguat 1011

Mr. Mahindar Singh, Probationer, from 1st June 1911.

Lower Subordinate Service.
42 Surver . .s, eto.
season.
The area under survey lay in the Attock, Jhelum, Shāhpur, Gujrānwāla, Gujrāt and Siālkot districts of the Punjab and in the Native State of Jammu.

The country under survey in the Attock and Jbelum districts comprised part of the salt range and was hilly, interspersed with deep iavines.

The country over the remaining area surveyed consisted of dead level plain intersected by the Jhelum. Chenäb and Rävi rivers and numerous irrigation canals.

Operations in the field commenced in the beginning of November 1910 and the Party returned to recess quarters at Mussoorie at the end of April 1911.

Tapography.-The area surveyed on the two-inch scale was 1,026 square miles and on the one-inch seale 4,971 square miles or a total area of 5,997 'square miles.

The Party was divided into six camps under Lieutenant thompson and Messis. Balonau, Newland, Kanak Singh, Saubolle and O'Sullivan,

- In the middle of January Mr. Babonau was sent back to Mussooric to the drawing section and Mr McCraken, who had just joined the Party, took over his camp.

The survey was based on triangulation completed by No. 4 Party during 1909-10, and on old traverses done in previous years by No. 1 Party. In parts of two sheets, however, $\left(43_{12,10}{ }^{\mathrm{D}}\right)$, there were not sufficient points, so a supplementary traverse had to be undertaken in these sheets by Lieutenant Campbell and Surveyor Anwar Ali.

This work took $1 \frac{1}{3}$ months to complete and covered an area of 71 square miles. The village maps of the various districts falling in the area to be surveyed were obtained from the Deputy Commissioners. They were pantographed down to the scales of survey and were then given to the surveyors who transferred the detail on to their boards, making each village fit with its plotted trijunctions.

In some districts the detail on these village maps was found very accurate and a great help to the surveyor, in others the detail was so incorrect that it was of no help at all.

A report on these village maps was sent to the Revenue Commissioner of the Punjab who had asked us to let him know as to their accuracy.

The following sheets were completed on the two-inch scale $43 \frac{\mathrm{D}}{5,8,13}$ and
 $\frac{\mathrm{L}}{2,0,7,8,11,12,16,16}$, and parts of $43 \frac{\mathrm{D}}{10,14}$ were surveyed.

Fair mapping.-Sheets Nos. $43_{\overline{6,7,8,12,1 \theta}}^{L}$ and $43 \frac{\text { 最 }}{7,11}$ have been submitted for publication during the year and the remaining 17 sheets are practically completed and will be submitted before the party takes the field.

## No. 3 PARTY (PUNJAB).

By Captain A. A. McHarg, R.E.
The field office opened at Delhi in the Punjab on the 1st of November Pebsonnel. 1910 and closed on the 20th of April

Imperial Officers.
Captain A. A. McHarg, R.E., in charge.
Lieutenant A. A. Chase, R.E., attached from 1 st January to 28th February 1911.
Lieutenant R. S. Wahab, I.A.
Provincial Officers.
Mr. B. M. Bertill.
Mr. A. C. Bose.
Mr. P. A. T. Kenny.
Mr. H. C. W. Stotegbury.
Mr. P. C. Newland.
Mi. F. H. Grant.

Mr. F. J. Grice.
Mr. J. A. Calvert.
Upper Subordinate Scruice.
Mr. Mubammad Lutf Ali, Probationer.
Louer Subordinate Servics.
4b Surveyors, otc.
1911.

Recess work started in Mussoorie on the 24th of April 1911.

The outturn of the party for the season is as follows :-
1-inch revision $\quad 5955.227$ sq. miles. survey.
2-inch revision 65.334 " survey.
1-inch supplement-
ary survey.
$262 \cdot 000$ "
Total 6282.

This includes the sixteen standard sheets falling in degree sheet 53 H and, the eight in the western half of degree sheet 53 L , or a total of twenty-four standard sheets. The two-inch survey comprised Lelhi and the country in its immediate vicinity as far south as the Kutb. This area was surveyed on a
large scale owing to the difficulty of showing with any degree of accuracy all the places of archæological interest and the suburbs of Delli, on a small scale.

Triangulation.-An area of 325 square miles was triangulated. This triangulation was supplementary to that previously existing and was only required for obtaining heights over the Ballabgarh hills.

All the 24 standard sheets surveyed during the year will be drawn and forwarded to the Superintendent, Northern Circle, for submission to the reproducing offices by about the end of November 1911.

A guide map of Delhi and vicinity has also been drawn and will be sub. mitted in due course.

The country surveyed comprised parts of the Delhi and Gurgaon districts of the Punjab and parts of the Meerut, Aligarh, Morádábád and Budaun and the whole of the Bulandshahr districts of the United Provinces.

With the exception of the ridge at Delhi and its continuation to the south in the Delhi and Gurgaon districts, the whole of the country was flat. The country between the Jumna and Ganges rivers is much cut up by canals. The slope of the ground which is roughly about 18 inches to the mile falls from north-west to south-east.

With the exception of the hilly portions of the country surveyed and the Jumna and Ganges khadars the whole area is practically under cultivation. The average height of the flat area is about 650 feet above sea level.

None of the area surveyed is particularly well wooded; but in all the districts of the United Provinces mango and fruit groves are more or less common.

The work consisted chiefly of revision survey and a small amount of supplementary survey.

Blue prints of the last published 1 -inch maps were used in every case except for the 2 -inch work in standard sheet $53 \frac{H}{2}$ and for the hilly portion of ground in $53 \frac{11}{3}$ for which an "aluminium mounted" board was used and on to which the outline from the old work was transferred in blue.

This aluminium mounted board was found very satisfactory and the distortion of the paper was very small indeed; but as blue prints are already distorted, before they are mounted, aluminium plates for revision and supplementary work are useless.

All the blue prints supplied from the map publication office were in new standard sheet sizes, and the extra strip of $2^{\prime} 27^{\prime \prime}$ had to be super-imprinted on to the adjoining old eastern standard shects.

Owing to the old sheets being unequally distorted, a certain amount of difficulty was found in making the two sheets fit together correctly, but the majority were extremely good and it was only in one case that the surveyor found the trijunctions east and west of the joining line to disagree inter se.

Some blue prints unfortunately were received with no trijunctions on them. The trijunctions were therefore plotted, but owing to the distortion of the paper, and also to the original traverse work not having been sufficiently connected with G. 'T. points, it was found very difficuli to plot these trijunctions in thoir correct positions. In most cases these plotted trijunctions had to be rejected, and the survey was carried out by making fixings from recognisable points. It is most important for this sort of revision and supplement. ary work that bluc print should bave all the trijunctions on them.

## No. 4 PARTY (UNITED PROVINCES).

By Captain L. C. Thuiflieg, I.A.

The field head-quarters of the Party opened at Lucknow on the 1.7th of

## Perbonnel.

Imperial Odficers.
Ceptain L. C. Thuillier, I.A., in cherge. Lieutenant F. B. Scott, I.A. Provincial Officers.
Mr. G.J. S. Rae.
Mr. H. W. Bigrie.
Mr. C. E. C. French.
Mr. A. B. Hunter.
Mr. G. E. R. Cooper.
Mr. F. E. R. Calvert.
Mr. Moqimuddin.
Upper Subordinate Service.
Mr. Vidya Nath Suri, Probationer.
Louer Subordinate Service.

October and remained there throughout the field senson. The recess quarters continued at Mussoorie.

Topogiaphy.-The area for survey lay in the districts of Lucknow, Unao, Cawnpore, and Etāwah; and portions of

69 Surveyors, etc.
districts Hardoī, Rēe Bareli, Farrukhābād, Mainpurī, Agra, Hamīrpur, Jālaun and Gwalior State.

The area surveyed on the 1 -inch scale was 4,933 square miles new survey and 1,115 square miles supplementary survey.

The sheets surveyed were $54 \frac{\mathrm{~J}}{19}, 54 \frac{\mathrm{~N}}{\overline{1,2,3,3,5,6,7,6,-10.19,14}}, 63_{\frac{1,2,6,6,7,0,10,11,12,15,14,15,16}{16}}$ and small areas in $63 \frac{\mathrm{n}}{3,4,7,6}$. Portions of some of these sheets needed supplementary survey only.

Field work continued till the second week in April when the party proceeded to recess quarters except a few surveyors who completed later.

The work this season was entirely new to the majority of the surveyors. The country being flat and covered with high crops, and enclosed by groves of trees, it was found impossible to plane-table by interpolation only, and chain traverse lad to be resorted to.

Three large rivers ran through portions of the work, viz., the Ganges, the Jumna and the Chambal; and the country was intersected by numerous smaller rivers and streams. Near the Jumna and Chambal rivers the country was cut up by deep ravines. These two rivers flow in very deep beds, in places 150 feet or more below the surrounding plains.

Traversing.-The area traversed comprised a portion of the Lucknow, Bāra Bankī, and Partābgarh districts and the whole of the Rāe Barelī, Sultānpur and Fyzäbād, in sheets $63 \mathrm{~F}, 63-\frac{3,9,4,0,7, \overline{8}}{}, 63 \underset{-6,0,19}{a}$. The country was similar to last year, perfectly flat, well cultivated, and in parts covered with groves, and covered an area of 6,236 square miles.

Traverse lines were run along graticules of half standard sheets, picking up trijunction pillars, and intersecting trees and all conspicuous objects. Connections were mado with 21 G . T. stations. The average daily outturn per man was 8 angles and 136 chains per working day.

This detachment having completed its work has been broken up.
Cantonment Survcys.-The following cantonments were surveyed during the year under report: Dargai, Malakand, Chakdarra, Hyderābād (Sind) and Loralai, and alterations and additions were made to the previous editions of the, maps of Risalpur and Allahābād.

Maps of 8 cantonments were sent for publications, viz., Dum-Dum, Meerut, Lucknow, Fort Sandeman, Dargai, Malakand, Chakdarra, and Allabābād.

The total cost of the section was Rs. 13,000 and the outturns and cost rates are as follows :-


Average outturn per working day per man-
Traversing 11 angles . . . . . 100 chains.
Detail $16^{\prime \prime}$ including contouring . . . 24.7 acres,
, $6 \pm^{\prime \prime}$, . . . . $1 \cdot 4$,

No. 9 PARTY (PUNJAB).
By Major G. A. Beazeley, R.E.
Work in Baluchistan having been completed, the Party took up work in

Pergonnel.
Imperial Officers.
Major G. A. Benzeley, IR.E., in charge.
Provincial Obficers.
Mr. J. A. Freeman.
Mr. W. J. Newland.
Mr. Dhani Ram.
Mr. P. A. T. Kenny.
Mr. H. C. W. Stotesbury.
Mr. D. K. Rennick.
Mr. J. McCraken.
Mr. A. K. Mitra.
Mr. A. J. A. Drake.
Mr. Abdul Aziz.
Mr. H. H. P. Butterfield.
Mr. F. Byrne.
Mr. F.J. Grice.
Mr, W. P. Hales.
Upper Subordinate Scrvice.
Mr. Gopal Singh, Rai Bahadur. Mr. Dalbir Rai.

Lower Subordinate Service. 60 Surveyors, etc. the Punjab in degree sheets $39 \mathrm{M}, 44 \mathrm{~A}$, and $E$, in continuation of the work of No. 3 Party.

In all 5,687 square miles were surveyed on the 1 -inch scale in the districts of Jhang, Miānwāli, Shāhpur, Lyallpur, Gujrānwāla, Lahore and Montgomery; of this area 2,176 square miles was new survey, 1,304 square miles was re-survey and 2,207 supplementary survey; the field head-quarters being at Lyallpur. The party was transferred to the Eastern Circle from the lst of April 1911, but continued to work in the Punjab till it had completed its programme.
Triangulation and a small amount of traverse work was taken up in Chotà Nāgpur in view of next field season's programme. The country surveyed was absolutely flat, but differed considerably in other respects from the dreary country west of the Jhelum. This consisted of rolling sand-hills covered with scanty scrub and a few stunted trees, while the Chenāb Colony in the Lyallpur district is fertile, well watered, and closely cultivated. The country in Jhang falls midway between these two classes.

The Chenāb Colony is well timbered and the trees obstruct the view a good deal in consequence. The "square" system of irrigation gives a very curious appearance to the field sheets, as all the field distributarics and villages are laid out in squares and give a chess-board appearance to the maps.

Recess duties.-An arrears mapping section was maintained at Mussoorie and is ${ }_{\text {fitl }}$ continuing its labours. Mr. Hales opened the recess office at Shillong about the middle of May and held charge till the officer in charge arrived on 1st of August after a very protracted field season. Sheets $39 \frac{\mathrm{~m}}{0.19,19}$ $44_{1,2,4,12,12}^{A}, 44_{1,2,3,4,4,12,13,16}$ are all nearly completed.

It is proposed to close the mapping section at Shillong by the end of December 1911 and send all work which cannot be completed to the Northern Circle drawing office to be finished there. Owing to lack of good draftsmen
ard sickness amongst the men in Shillong, the progress of mapping has been rather slow.

To carry out revision and supplementary survey work to the best advantage as regards outturn, quality and cheapness of cost, it is essential that the field sections should be complete in every respect before the party takes the field; and the pantograph detachments should be sent down early in the recess to the head-quarters of the districts in whose area the work for the following field season falls, and these detachments inspected at least once by the officer in charge of the party.

The officers in charge of these detachments should receive preliminary training in pantograph work beforehand to ensure their thoroughly understanding exactly what is required of them, so that they may employ the men under them to the best advantage. This preliminary instruction can easily be arranged for before the close of the field season if suitable arrangements are made.

In some cases much labour may be saved by utilising the 4 -inch reductions made by the local authorities and adding all detail omitted by means of a special gridiron on tracing paper showing the squares on the full size village maps on the 4 -inch scale; this gridiron often allows of the additional detail being drawn in by cye on the 4 -inch reductions. The latter generally so the village site, principal roads, railways and canals, and this facilitates all subsidiary detail being put in by eye; by this means a trained pantograph detachment can reduce about 30 villages a day instead of only about 3 . This was the outtunn of the detachments at Lyallpur and Gujränwäla after a month's practice.

The pantograph detachments should be organised as follows:-One provincial officer should be in charge and under him should be 3 survegors capable of managing a pantograph ; two of these pantographs should be $2 \frac{1}{2}^{\prime}$ and one $3 \frac{1}{2}{ }^{\prime}$ or $4 \frac{1}{2}{ }^{\prime} ; 3$ more surveyors should be employed in inking up the reductions in the correct colours and symbols, and three more should be employed in transferring these to the field sheets and inking them up.

With regard to the latter it was found a good plan to ink these up straight away in the correct colour ; one objection was raised to this, it being pointed out that it would lead to surveyors scamping their work; but this was not found to be the case. The advantages of inking up are two,-viz. (a) the paper is in good condition and the inking up can be done much neater and finer; (b) the surveyor knows exactly what the detail represents and does not run the risk of confusing roads with canals, etc. The colours used may be lighter than usual if considered neoessary, leaving it to the surveyor to colour up darker all detail found correct on the ground.

## RIVERAIN DETACHMENT.

By Mr. Maya Das Puif.
The field season commenced on lst October 1910 with head-quarters at

Personnel.
Provincial Officers.
Mr. Mrya Das Puri, in charge. Mr. Moqimuddin.

Cpper Subordinate Scrice. Mr. Chuni Lal Knpur, Probationer, from 20th August 1911 .

Lowor Subordinato Service. 75 Surveyors, eto.

Wazirābād and continued till the middle of April when the Party went to Lahore for recess.
The riverain area was as usual broken, slrubly, marshy, and sandy. Portions of villages situated above the high bank were well cultivated.

The Lower Bāri Doāb tract was plain, full of reserve forests, unpopulated and mostly waterless.

During recess the 4 -inoh compilation of riverain boundaries, traces for the settlement department, completion of computations, and drawing up instructions and various forms of return for the Lower Bāri Doāb work, were carried out.

The procedure adopted for the riverain work was the same as reported last year. The original programme was considerably modified by the civil authorities. All minor traverses for the cadastral surveys were finished by end of February 1911, and 2,178 plotted and compiled "Masairs" (settlement mapping sheets) were supplied to the settlement officers concerned in time to enable them to complete their records before the rise of water. Base lines with permanent mark stones were fixed on both banks of the rivers about one mile apart for the future survey and demarcation of riverain boundaries.

Lower Badi Doäb.-Work was undertaken during February 1911 at the special request of the Punjab Government. The settlement staff was deputed by the lst Financial Commissioner to do the work, and in addition several professional hands were employed.

All of them had to be trained for a considerable time.
The men were made to work from the whole to the part, allowing a maximum error of 1 in 500. Big blocks of about 80 to 100 rectangles were first broken, and the patwaris had to work inside these.

Dera Ismail Rhan.-A special Indus survey (scale 4 inches $=1$ mile) was undertaken during September 1910 at the request of the Assistant Commanding Royal Engineer, Dera Ismail Khān, and was completed on the 22nd of October with great difficulty.

The following table shows the work done during the field season :-


The total expenditure of the detaohment was Rs. 73,991 .

## SOUTHERN CIRCLE.

(Vide Index maps 2 and 7).
Lieutenant-Colonel P. J. Gordon, I.A., was in charge from 24th March till 22nd September 1911 and Brevet-Colonel T. F. B. Renny-'Tailyour, C.S.I., R.E., for the remairder of the year.

Thirteen thousand one hundred and seventy-one square miles were surveyed during the year under report ; the smallness in outturn is principally due to No. 8 Party which only surveyed 1,287 square miles in the season, owing to the abnormal difficulty of the country in which it was working.

The following is the detail of the country surveyed :-

| 4,741 | miles | of | 1 -inch | New survey. |
| ---: | :---: | :---: | :---: | :--- |
| 5,472 | $"$ | $"$ | $1, "$ | Revision survey. |
| 2,010 | $"$ | $"$ | $1 \frac{1}{2} "$ | Survey. |
| 393 | $"$ | $"$ | $2, "$ | " |
| 555 | $"$ | $"$ | 2 | $"$ |

A new departure was the introduction of $1 \frac{1}{2}$-inch survey for country which was too intricate to be shown on the 1 -inch. It proved very successful, and as may be seen from the table on page 23 , the cost-rate comes to very little more than the 1-inch.

## No. 5 PARTY (CENTRAL PROVINCES). <br> By Majon C. L. Ronebtson, C.m.G., R.E.

The field head-quarters of the party were located at Pachmarhi as being

Personnel.
Imperial Officers.
Mnjor C. L. Robertson, C.M.G., R.E., in charge.
Lieutenant C. F. Nation, R.E.
Provincial Officers.
Mr. F. P. Walsh.
Mr. C. Litchfiel!!
Mr. S. S. McA'Fes Fielding.
Mr. C. West.
Mr. Munshi Lal.
Mr. F. C. Pilcher.
Mr. E. J. Hanby.
Mr. F.C.Snint.
Cpper Subordinate Service.
Mr. Elsnath Battu.
Lower Sulordinata Service.
32 Surveyors, etc.
fairly centrally sisuated, and as having a sub-treasury through which funds were procurable.

As it was impossible to obtain any godown in Pachmarhí to store the party equipment during recess, it was decided to re-assemble the party at the close of the field season at Jubbulpore and store the property there as had been done during the last two field seasons.

Topography.-To execute the detail surveys on the 1 -inch and $1 \frac{1}{2}$-inch scales, the party was divided into three camps, each under an officer of the Provincial Service. 1,373 miles were surveyed on $1 \frac{1}{2}$-inch scale comprising sheets $55-\frac{1}{{ }^{4}, \frac{15,10}{}}, 55 \frac{\mathrm{M}}{4}$ and parts of $55_{\overline{0}, 7, \overline{8}}$ in districts Narsinghpur; Nougor, Damoh, and Jubbulpore.

The l-inch work comprised sheets $55_{\frac{\mathrm{J}}{1,6}}$ and parts of $55_{2}^{\mathrm{J}} \mathrm{\sigma}$ in Hoshangābād and portion of Bhopāl State.

The Revision Survey work was over such a large area and so far remored from most of the other work, that it was found impossible to require the officers in charge of other eamps to supervise it. It was therefore carried out practically without supervision, directly under the control of the oflicer in charge of
the Party. The best and most trustworthy surveyors were selected, and weré given full instructions as to what was required of them before proceeding to the ground. Sheets $55 \frac{\mathrm{I}}{0.13}, 55 \frac{\mathrm{M}}{10,11,12,14,15,10}, 55 \frac{\mathrm{~N}}{0,13}$, and parts of $64-\frac{1}{3}$ were dealt with in this manner.

The Quarter Master General of India having asked for a survey on the scale of 6 inches $=1$ mile, of the fields and fallow lands of Saugor Cantonment, the ground was examined with a vies to commencing this work. It was then found that the traverse stations on which the existing cantonment survey had been based some 45 years ago, had disappeared, and as there were no other fixed points on which the survey could be based, it had to be alandoncd for the season.

The country surseyed comprised a section of the valley of the Narbada Piver and the hills to the north and south of it. For a wilth of some 10 or 15 miles each sid: of the river, there is a flat plain about 1,000 feet above sea level, mostly cultivated and covered with scattered trees. The hills to the north of this are more or less wooded, and rarely reach an altitude of 2,000 feet; on the south side of the valley, however, they rise some $1,000-1,500$ feet ligher, culminating in the Dhupparh peak, 4,500 feet, on the Pachmarhi plateau. Here the forest is dense and the slopes steep, being scored in all directions with precipitous chasms 200 or 300 feet deep.

Triangulation.-The proposed programme was to complete net work triangulation in degree sheets 55 I and J . For this purpose the triangulating strength of the larty was fixed at 2 provincial officers, 1 upper subordinate and 1 surveyor; though it was anticipated that it would not be necessary to maintain this strength throughout the field season. Owing to the slowness of two of the observers, this programme was not carried out; and the result of the season's work is that out of 14 standard sheet areas proposed for survey, 6 remain untriangulated.

Recess duties.-The Party returned from the field with 19 sheets rearly for drawing-this number was however more than the drawing strength of the Party could possibly deal with, and 4 Revision Sheets were handed over to the circle drawing office. Owing to the lack of good draftsmen, the progress of the remaining 15 sheets was very slow, and it is unlikely that more than half will be completed before the close of the recess season.

The computation of the triangulation is complete.
This year, for the first time, the Party went through the field scason without baving a hospital assistant attached, and there is no reason to suppose that the general health has suffered in consequence. On gring into the field the position of the nearest dispensary was pointed out to each man; but in practice these dispensaries were so far apart as to be useless. The men were therefore dependent on their medicine boxes, which proved both in the nature and quantitics of the drugs they contain, most ill-adapted to their purpose. Next scason a special sulection of drugs will be packed in a box made for the purpose - under party arrangements.

With refcrence to the out-turns (shown in Table I on page 21) it is interesting to noto that the averagu plane-tabler works nearly as quickly on tho $1!$-iach scale as ho does on the l-inch scale. This perhaps is not at onco apparent till the fact that ucarly all the work done on the 1 -inch scale, and clansed as survey, lay in the phain of the Narbada, in a country which was mindonbedly much casier of survej than the aremoge of that done on the $1 \frac{1}{2}$. inch scute.

## No. 6 PARTY (BERAR).

By Liedtenant K. W. Pyb, ReE.
The field season opened at Chanda on the lst of November 1910, and closer]

Pembonnel.
Imperial Officers.
Captnin H. Wood, R.E., in charge up to 21st April 1911.
Licutenant A. H. Gwyn, I.A, in charge from 22nd April 1911.

Captain F. F. Hunter, I.A., in charge from 17th May 1911.
Lieutenant K. W. Pye, B.E., in charge from
14th August 1911.
Provincial Officers.
Mr. Amar Singh.
Mr. J. H. S. Wilson.
Mr. P. K. Andernon.
Mr. E. A. Meyer.
Mr. F. B. Kitchen.
Mr. R. B. Gilder.
Mr. J. O'C. Fitzpatrick.
Mr. A. J. Moore.
Opper. Subordinate Service.
Mr. Dharmu.
Lover Subordinate Service.
A1 Suivejore, etc.
on the 25th April 1911; the Party office reopening for the recess season at Banga-

## lore on the lst of May.

The field work carried out during the year was as follows:-
(i) Survey on the 2 -inch scale of reserved forests falling in the standard sheets $55 \frac{\mathrm{r}}{\mathrm{f}} \mathrm{I} 5 \mathrm{I} .1 \mathrm{l}$, $55 \frac{\mathrm{P}}{1}, 56 \frac{\mathrm{H}}{\mathrm{L}}, 56 \underset{-13}{\mathrm{I}}$ and
part of $56-\frac{1}{0}$ amounting to 97 square miles.
(ii) Revision survey on the 1 -inch scale of portions of sheets $46 \underset{2,3,6}{\frac{\mathrm{P}}{6}} 55 \frac{\mathrm{p}}{4}$ $56 \frac{\mathrm{~m}}{1}$, amounting to 770 square miles.
(iii) Survey on the 1 -inch scale of remainder of sheets $46 \frac{\mathrm{P}}{z, 3,6,12,15,16}$, $55 \frac{\mathrm{~L}}{1,15,18}, 55 \frac{\mathrm{P}}{4}, 56-56 \frac{\mathrm{l}}{13}$, totalling 2,223 square miles.
(iv) Triangulation of standard sheets $56 \frac{\mathrm{E}}{10 \mathrm{cand} \mathrm{e}, 15,10}$ and $56 \frac{1}{3}$.
(v) Theodolite traversing of boundaries of reserved forests falling in sheets $55 \frac{\mathrm{H}}{16}, 56 \frac{\mathrm{~m}}{\mathrm{~L}}, 56 \frac{\mathrm{I}}{\mathrm{T} .5 .0 .19}$, and $56 \frac{\mathrm{r}}{15}$, and also tlee boundary of Santa Cruz Cant ent, Bombay.
The work lay in the following districts:-
Bombay.-East Khāndesh.
Byderābäd.-Aurangābād, Adilābād, Parbhani.
Central Provinces.-Wardhā, Chānda.
Berār.-Yeotmāl, Akola.
The surveyors wore divided into 3 camps under the late Sirdar Amar Singh, and Messrs. Wilson and Kitchen. The traverse camp was under Mr. Meyer, aul was occupied exclusively with traversing the boundaries of reserved forests in Berair, falling in the programme of the season under report and a portion of tho next season. At the end of the season, the traversing of Santa Cruz Cantomment was taken up, the survey of which will be done during the coming season.

The country under survey was of a raried nature. The reserred forests surveyed on the 2 -inch scale, and a certain proportion of the l-inch work (principally in the Southern sheets) mere densely wooded and diffeult to surrey. On the other land there were large areas of oren undulating comitry whe work progressed rapidly.

The comntry under triangulation varied from hills to undulating; it w: on the whole open, and not much clearing mas necessary.

During recess the party completed the mapping of the 12 sheets surrerid during the field senson.

In addition the following were also completed :-
(1) Computations of triangulation of sheets $56 \frac{\mathrm{E}}{1,2,5,0}$ and in 8 more sheets the computations partially finished.
(2) Computations of traverse work falling in $56 \frac{E}{19}$ and $56 \frac{1}{1,6,-\theta}$ and the plotting of 4 inch forest boundary traces of $56 \frac{\mathrm{E}}{19}$ and $56 \frac{1}{1}$.
(3) The completion of rough charts and manuscript tables of data for degree triangulation charts 55 H and L .

## No. 7 Party (MADRAS).

By Me. W. M. Gomman.
The Party worked this year on the 1 -inch and $1 \frac{1}{2}$-inch scales in the

Personnbl.
Imperial Offeres.
Cartain C. P. Gunter, R.E , in charge from 30 th December 1911.
Lieutennnt A. H. Gryn, I.A., in charge up to 29th December 1910.

Provincial Officers.
Mr. W. M. Gorman.
Mr. J. O'S. Donaghey.
Mr. H. D. W. Stotesbury.
Mr. A. K. Mitra.
Mr. H H. P Butterfield.
Mr. J. C. St. C. Pollett.
Cpper Subordinate Service.
Mr. Abdul Hakk.
Lower Subordinate Service.
26 Surreyors, etc. low country in the South Kanara District of the Madras Presidency, north of Mangalore, and a portion of North Kanara in Bombay. 1-inch Revision Survey of Forest reserves was carried out in South Kanara and 2-inch Revision in Coorg.

The triangulation in advance of Survey was situated in the Coimbatore and Salem districts. The following sheets were completely surveyed, viz., $48 \frac{\mathrm{~K}}{0,10,11,12,13,14.15,18}, 48 \frac{0}{2,3,-12}$ and part of $48 \frac{\mathrm{~L}}{13}$ and $48 \frac{\mathrm{P}}{11,18}$ revised. Triangulation was carried out in 10 sheets of 57 H.

The country under survey comprised every variety, ranging from the open and bold hilly country of Mysore which was ideal for plane-tabling, to the lowlying and intricate ground of South Kanara. It may be described as a succession of highly cultivated valleys, covered with belts of jungle 10 to 20 chains in width, fringing the cultivated areas, and dotted with innumerable isolated huts. There are no village sites, except the towns along the main roads.

Distinguishable land-marks which were of use to surveyors were Mount Kudremukh, 6,207 feet above sea level anll the Jamālābād Fort hill which has a 1,000 fect sheer drop of smooth granite beneath it. The Gomata Rāya at Kärkala-a rock statue 41 feet high—was also used as a trigonometrical point.

The revision of the 1-inch Mysore topographical work was done the same as last year, by transferring the old work from black prints on tracing paper as the work prorressed. That of the 4 -inch Forcst Surveys was done by transferring piece-meal the 1 -inch reductions of the original 4 -inch survey on to the plane-tables. The original work of both of these surveys was found very gond.

In South Kanara the survey was greatly facilitated by the 1 -inch village plots compiled specially by the Madras Revenuo Survey. These consisted of akeloton maps drawn in 1 -inch standard shcets with village and traverse rijunctions plotted, as well as any Survey of India trigonometrical stations that existed when the Revenue Survoy was done. The position of most of these trijunctions agreed with tho plane table work; any discrepancy was
usually due to the actual site of the trijunction being doubtful. These skeleton maps also gave the very greatest assistance in the correct spelling and identification of village names. Next year it is hoped that these maps will contain in addition Forest boundaries, roads, cultivation limits, streams that have been traversed, and other detail taken up by the Revenue Survey.

The field head-quarters of the party was in Mangalore, and the recess office closed in Bangalore on 7th November and reopened there on 9th of June ; thus giving a field season of 7 months.

Recess duties.-It is hoped that twelve out of the thirteen completely surveyed sheets will be fair mapped by the end of recess; $48{ }_{13}^{\mathrm{K}}$ being left as arrears.

An index degree map on the $\frac{1}{4}$-inch scale of 57 H is under preparation and will be sent to be vandyked as soon as completed.

The arrears of triangulation charts have been partly disposed of by transferring some of them to the Superintendent, Trigonometrical Surveys, and to No. 11 Party. The computations of this season's triangulation have been completed.

No. 8 PARTY (MADRAS).
By Caftain C. M. Browne, D.s.o., R.E.
The operations of the party were carried out in parts of the Malabar

## Personnel.

Imperial Offecers.
Captain C. M. Browne, D.S.O., R.E., in charge from lith June 1911.
Lientemant S. W. S. Hawilton, R.E., in chargo up to loth June 1911 .
Lieutenant C. G. Levis, R.E.

## Provincial Officers.

Mr. W. F. E. Alams.
Mr. E. T. Bigrie.
Mr. S. F. Norman.
Mr. M. Mahaleva Mudeliur.
Mr. C. O. Dicari.
Mr. Balaji Dhondibn.
Mr. M. S. Ganesa Aiynr.
Upper Subordinate Serviec.
Mr. Anantrao Dhendiba.
Lower Subordinate Service.
30 Surveyors, etc. district of the Madras Presidency, and in the Native States of Travancore and Cochin. The work in Travancore included the survey on the 2 -inch scale of the Periyār catchment area and the commencoment of the survey of the Pambiyār catchment area. Detail survey was carricd out in sheets $58 \frac{n}{9,4,7,8,11}$ and suck portions of $58 \frac{0}{2,3,0,7}$ as were included in the Periyàr catchment area. Traversing was carried out in the Periyār and along the backwater of the coast, and triangulation in sheet $58 \frac{9}{3}$.
The Party left Bangalore on the 7th of Norember for the field headquarters at Pirmed and was delayed on the road for nine days by the Theni river being in flood and impassable.

Recess quarters were re-opened at Bangalore on the 21st of June.
Nature of the oountry.-The Periyar catchment area forms a part of the unexplored portions of the Pandalam hills; it is for the most part corered with evergreen forest and dense undergrowth; there are little or no menns of communication, and transport and labour are extremely difficult to obtain. The few hill men obtainable had to be employed for the surveyors and as supplies had to bo imported causing great dolay, the triangulator had a dificult time.

The oulturn of survey is small and the rates high, the cause being the extraordinary difficulty of the country surveyed, which cither consisted of dense forcst, or elso of padly and coconuut country studded with inmunerable habitations.

Survey methods.-As it has been found impossible to show all the intri. cate detail on the coast on the 1 -inch scale, one sheet $58 \frac{\mathrm{n}}{4}$ was surrcyed on the $1 \frac{1}{2}$-inch scale as a trial. The experiment has proved that this scale is the most suitable; the cost-rate is but a little more than the 1 -inch while at the same time all detail cin be shown. In the coming field season, three sheets will be surveyed on this scale.

Plots of all the State and Taluk boundaries were obtained from the proper authorities in Malabar and Cochin ; but in Travancore they do not exist, and the Taluk maps on the scale of 2 inches to one mile together with local information have been taken as the authority.

During the field season experiments were made with special plane-table sections and the following is the brief result of the trials :-
(i) Drawing paper mounted on a thin sheet of aluminiuns.-Monthly measurement of the graticules were taken and showed no appreorable differen. ces, but the paper did not lie flat on the aluminium and especially on damp mornings rose up from the metal plate and was not a success.
(ii) Mill-boards.-These proved no better than paper mounted in ordinary manner, and the ink was very apt to run when the board was damp. As Bristol boards have not been received in time for next season's work, these mill boards will be tried again with sheets of rag litho paper pasted over them to try and exclude the moisture.
(iii) Bristol Boards.-These were a success and would have been largely employed this season if they had arrived in time. The monthly measurements gave good results and the surface is nice to work on, while they do not seem to be easily affected by the weather.

Recess duties.-On the conclusion of the last survey year, the fair mapping of the party was badly in arrears, 13 sheets being incomplete when the party left for the field.

To cope with this a drawing section was left in Bangalore during the field scason, and 7 of these arrears sheets were completed and submitted for publication; one other sheet being drawn in the circle drawing office.

During recess the whole of the arrears and the area newly surveyed were fair drawn with the exception of $58 \frac{B}{8,11}$ and a small portion of $58 \frac{A}{15}$.

As the slicets will not be submitted for publication in the Survey year under report, a large portion have to be shown as arrears; but as only some 500 square miles remain to be fair mapped, the drawing is in a much better state than the actual figures inply.

# EASTIRR CIRCLE. 

(Fide Index maps 3 and 8.)
This circle remained under the superintendence of Brevet-Colonel G. B. Hodgson, I.A., throughout the year.

The circle came into existence on the 1st April 1910, and then consisted of only three Parties, Nos. 10, 11 and 13. No. 9 Party was transforred to the circle from 1st April 1911, but continued to be almost wholly employed on the mapping of its work in the Punjab throughout the year; and a section of the party will remain so employed until the end of December, after which all mppling that remains unfinished, will be transferred to the Northern Circle lrawing office.

9,218 square miles were surveyed during the year consisting of 一

| 45 |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| 209 | " |  |  |

## No. 10 PARTY (UPPER BURMA).

The party asscmbled for field work at Bhamo on the 18th November 1910,

Perbonnel.
Imperial Officers.
Captain E. C. B.ker, R.E., in clarge. Lieutenant W. E. Perry, R.E.

Provincial Offecrs.
Mr. O. D. Smat.
Mr. F. S. Bell.
Mr. P. Willinns.
Mr. C. S. Litllewood.
Mr. W. G. Jarbu.
Mr. Asinatullah Khan.
Mir. W. H. Strong.
Mr. C. B. Sexton.
Tipper Subordinate Servico.
Mr. Laohman Daji Jadu, Rai Sohib.
Mr. Hayat Mubammal.
Dlr. B. C, Il. Collins.
Lower Subordinate Service. 46 Survogors, cte.
and all surveyors had reached their ground and commenced work by the 25 th, and continued to the end of May 1911; the fieid season having been unduly prolonged because the programme was so far from completion at the usual time for closing ficld work. The programme was not completed ; 3 full slieets and a small part of a fourth being left undone. This was due to the retirement or discharge of five survegors and the deputation of three more with political missions after the programme had been drawn up.

The total area surveyed within the limits of Burma was 2,798 square miles of which 2,615 were surreyed on the 1 -inch, and 183 square miles consisting of forest surveys, on the 2 -inch scale. An aren of 290 square miles was sketched beyoud the frontier on the 1 -inch scale, and rcconnaissance surveys were carried out by three Surveyors attached to political missions known as the Hyinma and Maikware missions. The former surveyed an area of 1,890 squant miles on the $\frac{1}{2}$-inch, 4 square miles on the 4 -inch and $2 \frac{1}{3}$ square miles on the 6 -inch scale, and the latter 1,845 square miles on the $\frac{1}{4}$-inch. scale.

Triangulation.-The triangulation was carried out by one Provincial officer and the traversing by three traversers who also carried out the traversing of
forest boundaries. The triangulation was connected with the Upper Irrawaday Secondary Series, emanating from the Great Salween Series and running northwards between the meridians $97^{\circ}$ and $98^{\circ}$, which was being observed during the season under report.

Nature of country.-The country under survey fell almost entirely in the Bhamo district, but included in the south a very small part of Möngmit State and a small portion of Myitkyinā district in the north-east. To the east of Bhamo there is a strip of flat country about 13 miles wide and beyond that broken, heavily wooded hills. The south-eastern portion of the work was also hilly and wooded; but although attaining in places a neight of 8,000 feet above the sea, this part was the easiest to surveg. The valleys of the Irrawaddy and Taping rivers were in parts marsby and covered with thick jungle. Roads and paths were fairly plentiful excepting to the west of the Irrawaddy.

The cost-rates for the detail survey are much higher than those of last season which is due to the appointment to the party of a second Imperial officer who was employed on 1 -inch plane-tabling; and in the case of the 2 -inch forest survey, to the fact that the survey of a similar nature done last season was revision work.

Forest survey.-The following forest reserves fell into the area under survey, and not having been previously surveyed were mapped on the 2 -inch scale:-Taungbalaung of the Myitkyinā division and Bumsawn, Teinthaw, Momauk, Sinlum, Lungja, Kadawtaung, Si-u, Namik and Namkao of the Bhamo division; also the forests of Naunghu and Namme of the latter division which it is proposed to reserve. The reserves of Simaw, Munsin, Nanhan, Mohlaing and Mosit had been previously surveyed. The survey of the Namme reserve was not completed, but will be done next season when the survey of all the forests in the Bhamo division will have been done. No 4 -inch boundary surveys were done this season.

Recess work.-The mapping was well advanced at the close of the season, and it is expected that it will be completed before the party takes the field again: 13 sheets were completely surveyed and mapped, viz., Nos. 92


The $\frac{1}{4}$-inch reconnaissance survey done by R.S. Lachman Jadu while attached to the Makware mission, and that drawn by Captain Cotter who worked from the Assam side, was fair drawn for inclusion in sheets 14 S. E. and 15 N. E. of the S. E. Transfrontier Series. The $\frac{1}{2}$-inch survey done by Mr. Hayat Muhammad and Surveyor Sheikh Muhammad Salik with the Hpinma mission was sent to the Simla drawing office for fair mapping.

Three triangulation charts of sheets $84 \mathrm{M}, 93 \mathrm{~A}$ and 93 E , which were reported as in hand last scason, were completed, while those of 92 L and 93 I are now in hand and will be completed next season after which no more charts will be drawn by the party.

Cantrnmenl surveys.-The survcy of the cantonment of Rangoon was completed and also the mapping, which, together with that of the cantonments of Bhamo, Mandalay, Maymyo, and Meiktila, and of the remaining bazars of Sccunderäbad and Bolārum, was forwarded to the Trigonometrical Office for publication.

This section was disbanded in May 1911 laving completed the survey and mapping of all the cantonments allotted to it.

## No. 11 Party (KARENNI AND SOUTHERN SHAN STATES).

The party commenced work this season in the area allotted to it in the

Pergonnst.
Imperial Officers.
Captain R. H. Phillin:ore, R.E., in charge from 27 th November 1910.
Lieutenant J. A. Field, R.E., in charge up to 26 th November 1910.

Provincial Officers.
Mr. V. W. Morton.
Mr. T. P. Denar.
Mr. A. A. Graham.
Mr. H. St. J. Kenny.
Mr. A. J. Bootb.
Mr. R. M. Wyatt.
Lower Subordinate Service.
28 Snrveyors, etc. reorganisation of the Department. The usual long journey to the field only permitted of a field season of just over 4 months. One section left Maymyo at the end of October and did not reach its field head-quarters till the 18th December, and some of the surveyors did not start work till the 26th December. The rest of the surveyors left Maymyo on the 15th November and had all commenced work by the 20th December. Field work closed between the 20th April and 3rd May, and the majority of the surveyors were back in recess quarters by the 16th May, but some did not arrive till the 2nd June. The programme was completed as usual in this party.

The triangulation owing to unavoidable circumstances was carried out by two inexperienced observers who did not work to the best advantage. A lot of time was lost in waiting for the haze to clear and consequently the cost-rate is higher than usual.

Contours were inserted with a vertical interval of 100 feet except in sheet $9 \cdot 4 \frac{\mathrm{E}}{2}$ which included the wide plain round the market town of Lnikaw where the 50 feet interval was employed. The country surreyed was sparsely inhabited, the hills were generally open though steep, and in most parts broken and rocky ; communications were very bad, and supplies and labour presented many difficulties. The costrate for detail survey is high this season owing to the great distance from the railway and the wild and uninhabited nature of the country. Escorts of Military police were provided to several of the surveyors working along the siamese frontier.

As a large part of the aren under survey lay close along the Salween river, work was much interrupted by morning mists in December and January, whilst the smoke haze in March was thick and persistent. Many surveyors had to stop work for two or three days at a time when hills only a mile distant were blotted out by bazc. No rain fell from the begimning of December till the middle of April and the heat was intense in the river vallevs. Nearly all the trees are deciduous, and the hills were practically bare during February and March. Burning of the jungle commenced in February aud the whole country then became dry and burnt up and hill climbing was more like work in Baluchistan than Burma. In the trans-Salween area of the Southern Shan States the villages numbered about 1 to 20 square miles and these were by no means cvenly distributed. In Sheet $94 \frac{5}{1}$ there was a tract over 180 miles square with but 2 villages. In Kareuni villages were more numerous but the people were useless. There ras great scarcity of rice throughout and it had to bo sent out from the Shan centres to the surveyors. Nowhere was it so expensive as in the prosperous Karen city of $Y$ wathit where it was over one rupee for 4 viss, $n$ viss being equal to 31 pounds. Here all rico is brought by bullocks from Loikaw ne by boat from the ditection of Mawhmai in the Shan States.

Some difficulty was found in following the boundaries between the smail Karenni States, and the Assistant Political Officer, Mr. Carey, went round and pointed them out personally, thus ensuring their being correctly surveyed.

About 200 miles of the boundary between Burma and Siam were surveyed. The surveyors were forbidden to cross the frontier into Siam, and as the boundary runs along a watershed the whole way and the hills were heavily wooded, very little grouud beyond the boundary was sketched in, with the exception of that part lying in Shect $94 \frac{\mathrm{~m}}{1}$. The greater part of this sheet had been surveyed in 1909-10 in connection with a dispute as to the boundary, and here a considerable amount of the country beyond the boundary line has been mapped. All pillars mentioned in the Boundary Commission Report of 1893 were found except one at a spot where the boundary crosses the Mo Pai river.

No forests fell into the area under surrey, but a theodolite traverse was done of the boundary of the Tamhpak reserve of the Southern SLan States division in Sheet $94 \underset{5}{\mathrm{E}}$ amounting to 76 linear miles, and the reserve will be surveyed on the 2 inch scale next season.

Recess duties.-All the 17 sheets surveyed were fair mapped during the recess and forwarded to the Circle Office for publication. Their numbers are


Small areas previously omitted in Sheets $93 \frac{\mathrm{P}}{7}$ and $94 \frac{\mathrm{~F}}{\mathrm{D}}$ were also surveyed and mapped.

The computations of the season's triangulation and traversing were completed and the charts and general reports of Sheets $93 \mathrm{O}, 93 \mathrm{P}$, and 93 L were completed and despatched to head-quarters. Charts of Sheets $93 \mathrm{~J}, \mathbf{4 4} \mathrm{E}$, and 94 I still remain to be drawn, but will be done in the Trigonometrical Office at Dehra Dūn.

No. 12 PAR'l'Y (ASSAM).
The operations of former seasons were continued in the Sylhet and Khäsi

## Pebbonnel. <br> Imperial Officers.

Major A. Mears, I.A., in charge.
Lieutenant G. F. T. Oalres, R.E.
Prooincial Officers.
Mr. W. Skilling.
Mr. C. C. Byrne.
Mr. Pramadn Ranjan Ray.
Mr. J. II. Williams.
Mr. Amjad Ali.
Mr. L. Williame.
Mr. P. C. Mitra.
Mr. H. H. Creed.
Upper SuLordinate Service.
Mr. Nanak Chand Puri.
Lower Subordinate Service.
41 Surveyors, etc. and Jaintiā Hills districts of Assam; the survey being carried out on the 1 -inch scale, and consisting partly of original and partly of supplementary survey. The Nongkyllem reserved forest, 26 square miles in area, which fell into the area under survey and had not been previously surveyed on a large scale, was surveyed on the 2 -inch scale.

Field work was commenced on the 1st November 1910 and closed at the end of April when constant rain was experienced and it was impossible to continue it any longer. 'The programme was not completed either of triangulation, traversing or detail survey. Of the latter, all but one standard sheet was completed and the defect was partly due to an outbreak of cholera which necessitated the removal of the surveyors temporarily from that locality, and partly to the fact that few of the surveyors had had any previous experience of survey by interpolation in open hilly country, and their progress was at first very slow. This is the first season for many years that country of this type has been met with by this party.

- Triangulation.-The triangulation was executed by two Provincial officers and was based on a secondary series which had been observed the previous season by No. 15 Party, emanating from the Assam Valley series at about longitude $90^{\circ}$ and running eastwards just north of latitude $25^{\circ} 30^{\prime}$ to longitude $93^{\circ}$.

The heights of the scason's triangulation were based on the Cbhaygron and Palāsbāri bench-marks of the Pārvatipur-Gauhāti line of levelling of the Great Trigonometrical Survey, and agree very well with the original values of the Great Trigonometrical triangulation, but differ by some 5 to 7 feet from those of Mr. Bond's revisionary triangulation of 1897-98. This is probably due to the fact that Rangsonobo H. S. which was Mr. Bond's starting point, was affected by the earthquake of 1897 , but was apparently assumed to be unaffected, A connection made by the Great Trigonometrical Levelling Party this season with Somullon H. S. gives a difference of only 1 foot from the trigonometrical height, whereas Mr. Bond's triangulation differs by $5 \cdot 5$ feet from the original height.

Triangulation being impossible over a large part of the area required to be prepared for detail survey, traversing had to be resorted to. Two traversers were employed on this for the whole field season and a third for about 4 months, and an area of 1,600 square miles was thus prepared for detail survey. The greater part of the area traversed consisted of open cultivated country which had been cadastrally surveyed in 1892-95, and only a few traverses were necessary in this part to provide heights. Adjoining the Bhutān frontier, however, where there is much dense jungle, the traverses had to be run close together, and the work was very slow. The stations were only temporarily marked by wooden posts in the jungle and wooden pegs in the open cultivated lands, three consecutive stations every two miles or so, being marked by galvanised iron cylinders embedded in the ground and a mound of earth raised over them. There were 415 cylinders embedded and 489 linear miles of traversing.

The area surveyed in detail comprised very varied country, a narrow strip of country at the foot of the Khāsi hills being flat and open, while the hills themselves were precipitous and densely wooded in places and open rolling downs in others.

The supplementary survey was mainly based on the traversing of the cadastral survey of 1892-95; but the details of the cadastral maps were found to have altered so much owing to the length of time that has elapsed since the cadastral survey was carried out, and to the fact that almost the whole country is submerged annually during the rainy season, that the work practically amounted to a new survey.

Cost-rates.-The cost-rates are all affected by the difficulty experienced in obtaining labour for jungle clearing, and for transport purposes in the hills, where carts were impractícable and the wages paid very high. In the part of the Khāsi lills which was triangulated, villages were few and far between and , the communications very bad.

The cost-rate for triangulation and traversing is low this season for tue reason given above, that the traversing of the cadastral survey was found sufficient and very little fresh traversing was required in that area. The costrate for original 1 -inch detail survey is slightly higher than last season's, wheh considering the nature of the country and the larger outturn of this season should not have been the oase; but the increase must be ascribed to the causes etailed above, to which the failure to accomplish the programme was due.

The cost-rate for 2 -inch original forest survey is considerably less than latt senson's, but this was due to the easy nature of the small area surveyed on that scale this season. The cost-rate of the supplementary survey is somewhat lower than that of last season, due also to the easier nature of the country.

Recess woork. - The mapping this season was almost completed when the party took the field again and the following sheets were submitted to the circle
 triangulation chart of Sheet 83 D which was commenced the previous season was completed, and also the general report thereof, and both forwarded to the Trigonometrical Office. This is the last chart that will be drawn by the party.

The boundaries of the various petty States in the Khāsi and Jaintià Hills are not defined, but at the request of the Local Government, the names of the States have been entered on the fair maps.

## TABLE I.

OUT-TURNS OF DETAIL SURVEY.

| Scale. | Clasa of burvey. | Cirole. | Farty. | Looality. | Class of Conntry. | Oot-tokn. |  | Average namber of filings per aquare mile. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Total вqпate miles. | Average per man per month in equare miles. (b). |  |
| 1-inch | Survey | N | No. 1 | Kashmir . . | Hilly | 3,514 | $33 \cdot 0$ | 6.4 |
|  |  | N | No. 2 | Punjab . | Level plains . | 4,971 | ¢0.5 | 41.6 |
|  |  | N | No. 4 | United Provinces | Level plains and broken groand. | 4,933 | $25 \cdot 9(a)$ | 19.0(a) |
|  |  | S | No. 5 | Central Provinces and Central India. | $\begin{gathered} \text { Open } \\ \text { plains. } \end{gathered}$ | 874 | 21.4 | 12.7 |
|  |  | S | No. 6 | Bombay, Central | Varied . . | 2,223 | $21 \cdot 2$ | 22.0 |
|  |  |  |  | Provinces, Berār and Hyderābād. |  |  |  |  |
|  |  | S | No. 7 | Bombag, Madras, Mysore and | Part open, part hilly and wooded. | 734 | 16.8 | 26.0 |
|  |  | S | No. 8 | Madras . . | Part flat, encloged, | 910 | $14 \cdot 2$ | 24.8(c) |
|  |  | N | No. 9 | Punjab . . | part hilly forest. | 2,176 | 23-8 | 11.4(a) |
|  |  |  |  |  | desert. |  |  |  |
|  |  | E | No. 10 | Opper Burma . | Densely wooded and generally hilly. | 2,615 | 25.7 | $13 \cdot 0$ |
|  |  | E | No. 11 | Southern Shan States and Karenni. | steep rocky hills, lightly wooded. | 3,229 | 91-2 | 6 |
|  |  | E | No. 12 | Absam ${ }^{\text {a }}$ | Wooded hills | 2,720 | 21.6(a) | 11(c) |
| 1-iuch . | Revision . | $N$ | No. 3 | Punjab and United Provin- | Flat open country . | 5,955 | 30.1(a) | $13.0(a)$ |
|  |  | S | No. 5 | $\qquad$ | Cultivated plains and wooded bills. | 2,919 | 128:3 | 25 |
|  |  | S | No. 6 | Bombry, Berār and Hyderãbād. | Varied . . | 770 | $24 \cdot 7$ | 14.0 |
|  |  | S | No. 7 | Madrab, Mysore and Coorg. | Bold forest-clad bills | 1,783 | $38 \cdot 2$ | $7 \cdot 0$ |
| ]-inch . <br> 1-inch | Re-surv y | N | No. 9 | Punjab . | $\cdots$ | 1,304 | $23 \cdot 8$ | $11 \cdot 4(a)$ |
|  | Supple. mentiry Survey. | N | No. 9 | Punjab and United Provin. ees. | Flat open country . | 262 | 301(a) | $13 \cdot 0(a)$ |
|  |  | N | No. 4 | United Provinces |  | 1,115 | $25.9(a)$ |  |
|  |  | N | No. 9 | Punjab. | Flat, open, part desert. | 2,207 | 23.8 | $11 \cdot 4(a)$ |
|  |  | E | No. 12 | Assam | Open plains . . | 445 | 21.6(a) | $9(c)$ |
| 1tindinh. | Survey | S | No. 5 | Central Provinces and Central Inclin. | Cultivated plains and wooded hills. | 1,373 | 161 | 25.7 |
|  |  | S | No. 7 | Mudras, Mysore and Cuorg. | Flat open with tidal croeks. | 556 | 136 | 29.0 |
|  |  | S | No. 8 | Madras - . | Flat enclosed . | 81 | 5.8 | $66.7(c)$ |
| 2-inch | Survey | N | No. 2 | Puojab . | Hilly with deep rarines. | 1,026 | 17.2 | 344 |
|  |  | S | No. 6 | Bumber, liorãr and Hylerūbad. | Deuse scrub-junglo . | 97 | 67 | 73 |
|  |  | S | No. 8 | Malras. | Part llat enclosed, part hilly denso forest. | 298 | 77 | $359(c)$ |
|  |  | E | No. 10 | Upper Durms | Deusely woided. | $18: 1$ | 96 | - |
|  |  | E | No. 12 |  | Dense hilly foreat. | 20 | 5.5 | $79.8\left(c^{\circ}\right.$ |
| 2 -inch | Revision | $\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$ | $\begin{array}{ll} \text { No. } \\ \text { No. } & 7 \end{array}$ | Punjab <br> Madmes, Mrsoce and Coorg. | Delhi city and ritge Ililly forest | 65 555 | $\begin{aligned} & 21 \cdot 1 \\ & 46^{\circ} 1 \end{aligned}$ | $\begin{array}{r} 17.7 \\ 7.0 \end{array}$ |

(a) Includes all kinile of 1 -inch sureres.
 (c) the diferont parien may ho comprorod togothor.
(c) Inoludiug P. T. Irarorgo Aringe.

TABLE II.
DETAILS OF, TRIANGOLATION AND TRAVERSING.

| Circle. | Party. | Locality. | triangolation. |  |  |  |  |  |  |  |  |  |  |  | traversing. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Minor. |  |  | Tertiary. |  |  | $\begin{aligned} & \text { Intersectidd } \\ & \text { points. } \end{aligned}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{\|l\|} \hline \text { Number of points } \\ \text { fired. } \end{array}$ |  |  |  |  |  |  |
| N | No. 1 | Kashmir. | 6 | 3,079 | $\cdots$ | $\cdots$ | ... | ... | $\cdots$ | ... | ... | $\cdots$ | ... | $\cdots$ | ... | ... | ... | ... | $\cdots$ |
| $\mathbf{N}$ | No. 2 | Ponjab . . | $5 \& 6$ | ... | $\ldots$ | $\ldots$ | ... | ... | $\cdots$ | $\cdots$ | $\cdots$ | $\ldots$ | ... | $\ldots$ | ... | 71 | 217 | ... | 4 |
| N | No. 3 | Panjab and Uoited Prorinces. | 6 | 325 | $5 \cdot 5$ | 5.5 | ... | ... | $\cdots$ | 12 | 17.7 ${ }^{\prime \prime}$ | 0.4 | 45 | 39 | $\cdots$ | $\cdots$ | $\cdots$ | ... | $\cdots$ |
| N | No. 4 | United Prorinces | $\ldots$ | ... | ... | $\ldots$ | ... | .." | ... | ... | ... | $\cdots$ | ... | ... | 6,236 | 1,905 | 5,662 | I in 9 | 0.35 |
| s | No. 5 | Central Provinces | $6 \& 7$ | 2,512 | 24 | $2 \cdot 5$ | ... | ... | $\ldots$ | 108 | $10^{\prime \prime}$ | 0.2 | 1,044 | 0.6 | ... | ... | ... | ... | ..' |
| S | No. 6 | Bombay and Berār . | 6 | 3,360 | (a) | (x) | (a) | 8.4 | 0.2 | (a) | 21.7 | 0.2 | (a) | ... | $\ldots$ | 804 | 5.716 | 2 | 0.8 |
| 8 | No. 7 | Madras, Mysore | 6 | 1,769 | 6.6 | 6.5 | ... | ... | 0.2 | 11 | $18 \cdot 0$ | $0 \cdot 3$ | 258 | 0.8 | ... | ... | ... | ... | $\ldots$ |
| S | No. 8 | Madras . | 6 | 279 | $3 \cdot 3$ | $3 \cdot 4$ | 10 | $8 \cdot 0$ | $0 \cdot 1$ | ... | ... | ... | 71 | 0.8 | ... | 85 | 1,593 | 3 | 1.0 |
| N | No. 9 | Panjab . . . | 6 | 3,575 | $\ldots$ | ... | ... | ... | $\cdots$ | $\cdots$ | ... | ... | 376 | ... | ... | 67 | ... | ... | $\cdots$ |
| E | No. 10 | Opper Burma . | 6 | 1,775 | 11.5 | 12.5 | 19 | $10 \cdot 0$ | 02 | ... | $\cdots$ | $\cdots$ | 129 | 0.5 | 1,850 | 369 | 5.717 | 1.05 | $0 \cdot 8$ |
| E | No. 11 | Southern Sban States | 6 | 1,850 | 5.0 | 6.0 | 26 | $9 \cdot 2$ | $0 \cdot 2$ | 22 | $7 \cdot 6$ | 0.2 | 303 | 0.4 | ... | 76(b) | ... | ... | -. |
| E | No. 12 | Assam . | 6 | 2,440 | $5 \cdot 9$ | 6.2 | ... | $\cdots$ | ... | 58 | $8 \cdot 6$ | $0 \% 2$ | 351 | 08 | 1,600 | 489 | 1,914 | $10 \cdot 6$ | 20 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## TABLE III.

COST-RATES OF SURVEY.

| Circle. | Party. | Locality. | Clase of country. | COST-rates, rupees. |  |  |  |  |  |  |  |  |  |  |  | Total cost of party. <br> Rs. |  | Rexabig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Detall Sugter per bquate mile. |  |  |  |  |  |  | Triangola tion pek BqDABE MIL.E. <br> Minor and |  mile. |  |  |  |  |  |  |
|  |  |  |  |  |  | 1-inoh resurvey. |  |  |  |  |  |  |  |  |  |  |  |  |
| N | No. 1 | Kashmir | Hilly . . . . | 15.7 | ... | $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | ... | $9 \cdot 8$ | $\cdots$ | $\cdots$ | ... | 3,514 | 1,10,162(a) | 31.3 | (a) Escluding Rs. 3,840 for Field Service press |
| N | No. 2 | Panjab | Level plains . . | $9 \cdot 4$ | $\cdots$ | $\ldots$ | $\cdots$ | $\cdots$ | $28 \cdot 4$ | $\cdots$ | ... | 39.2 | ... | $\begin{aligned} & 7 \cdot 6(b) \\ & 2 \cdot 0(c) \end{aligned}$ | 5,997 | 1,23,724(d) | 20.6 | (b) Cost-rate for $2^{\prime \prime}$ " |
| $N$ | No. 3 | Punjab and United Provinces. | Flat and open . . | ... | $\cdots$ | 11.3 | 10.0 | $\cdots$ | $\cdots$ | $35 \cdot 7$ | 2.6 | $\cdots$ | $\cdots$ | 5 | 6,283 | 1,06,721 | 17.0 |  |
| N | No. 4 | Onited Provinces. | Level plains and broken ground. | $9 \cdot 6(f)$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | ... | $15 \cdot 5$ | ... | 5.1 | 6,048 | 1,06,814(e) | 17.7 | (d) Exclading Re. 3,909 |
| s | No. 5 | Central Provinces and Central India. | Caltivated plains and wood. ed hills. | 193 | $2 \cdot 1$ | $\cdots$ | $\cdots$ | 2134 | $\cdots$ | ... | 11.2 | ... | $\cdots$ | 70 | 5,166 | 1,06,612 | $20 \cdot 6$ | for emploration and ${ }^{\text {a S Secial Military }}$ Survey of Dera Ismail Khān. |
| s | No. 6 | Bombay, Berar and Hyderabid. | Plaine and acrab jangle | 132 | 10.0 | ... | $\cdots$ | $\cdots$ | 37.8 | $\cdots$ | 7.5 | $\ldots$ | $19 \cdot 1$ | $9 \cdot 6$ | 3,090 | 1,13,507 | 36.7 | (e) Exoluding Re. 13,848 |
| S | No. 7 | Madras. Mysore and Coorg. | Varioas . . | $24 \cdot 4$ | $\cdots$ | $15 \cdot 1$ | ... | 28.5 | $\cdots$ | 77 | 2.7 | $\cdots$ | $\cdots$ | 72 | 3,629 | 93,641 | 25.8 | (e) Etading Re. 13,848 on local surveys. |
| S | No. 8 | Madras. . . | Flat onclosed and dense forest. | 43.5 | ... | ... | $\cdots$ | $46 \cdot 3$ | 93.7 | $\cdots$ | $45 \cdot 1$ | 28.6 | $\ldots$ | 11.4 | 1,287 | 1,16,486 | 905 | $(f)$ Cost-rate for all kinds of $1^{\prime \prime}$ eurvey. |
| N | No. 9 | Punjab - | Flat, open and partly desert | $10.9(f)$ | $\ldots$ | ... | ... | ... | ... | $\ldots$ | 52 | 15.2 | ... | 28 | 5,687 | 96,27\%(g) | 16.9 |  |
| E | No. 10 | Opper Barma | Partly flat, partly hills | 25.1 | ... | ... | ... | ... | 57.9 | $\ldots$ | 8.8 | 58.7 | ... | 8.8 | 2,798 | 1,40,177(h) | $50 \cdot 1$ | (g) Excluding Rs. 16,901 work. |
| E | No. 11 | $\begin{gathered} \text { Southern } \\ \text { States., } \end{gathered} \quad \text { Shan }$ | Steep, rocky hills - | 31.8 | ... | ... | ." | ... | ... | .. | 13.2 | ... | $55 \cdot 1$ |  | 3,229 | 1,45,153 | 44.7 | (d) Excluding Rs, 41,395 |
| $\boldsymbol{z}$ | No. 12 | Авват ${ }^{\text {a }}$ | Plains and partly forestclad hills. | 30.0 | ... | ... | 13.5 | ... | 56.6 | ... | 10.9 | $21 \cdot 7$ | ... | $7 \cdot 6$ | 3,191 | 1,50,4:7 | $47 \cdot 2$ | on reconnaissance and local sarvega. |

# PART II.—GEODETIC SURVEY. <br> astronomical Latitudes. 

\author{

- No. 13 PAR'TY. <br> ( Vide Index map 10). <br> By Lieftenant-Colonel G. P. Lenox-Confngham, R.E.
}

The programme of observations for the season 1910-11 consisted of two separate parts. The first part includ-

Personnel.
Imperial Officer.
Mnjor H. L. Crostbwait, R.E., in charge. ed the observation of six astronomical latitudes in Sind and Baluchistān, and the second part consisted of the addition of four latitudes in the Siwāliks; it had been intended to include two more stations in the latter region, but the abnormally wet and cloudy weather of March 1911, and the fact that the officer in charge had to go to Simla at the beginning of April to take over the Simla Drawing Office prevented the completion of the original plan.
2. Major H. L. Crosthwait, R.E., held charge of the Party throughout the year and made all the astronomical observations. During the recess season, though Major Crosthwait continued to be in nominal charge, the work of the party was supervised by Lieutenant-Colonel G. P. Lenox-Conyngham, R.E.
3. The instrument used was the zenith telescope by Messrs. Troughton and Simms, which has been in regular use as the chief latitude instrument of the department since 1880.
4. The constants of the instrument and results of the operations.-The levels mounted on the zenith telescope were Nos. 9 and 10 by Bolmes.

Determinations of their scale values were made on the bubble tester both before and after the field observations.

The results were not very satisfactory, as there is a good deal of difference between the values obtained before the field work and those obtained after it.

As there was no means of saying which of the two values was the more trustworthy, the mean has been used for the reduction of the observations.

The values obtained were-


There is clearly an uncertainty of at least 2 per cent. in the level corrections deduced from these mean values; but as the mean magnitude of the level correction is less than 1 incb, and as there is no tendency for it to be of persistent sign, the error in the final latitudes due to this uncertainty is probably extremely small.

- 5. The micrometer value was determined by means of measurement of the differences between the declinations of well known couples of stars. Sometimes these observations were fitted in among the latitude observations, and sometimes a special night, or more than one, was devoted to the business.

The results obtained were as follows :-


No observations were made at the other stations. These results are very satisfactory, and give great confidence in the truth of the value obtained: nevertheless in order to test it still further, abstracts were prepared of the observed latitudes according as positive or negative micrometer corrections entered into their formation, in order to see whether there was any sign of a systematic difference.

The results are shown in the following table :-


The mean of the deduced apparent errors at the six Baluchistan and Sind stations is $+0^{\prime \prime} \cdot 003$.

This quantity hardly exceeds the probable error of the adopted mean ralue and our confidence in the latter is therefore increased.

The mean apparent error deduced from the observations at the Simalik stations is $+0^{\prime \prime} \cdot 009$ : this quantity, though larger than that derived from the Sind stations, is still not excessive; and any ill effects will be easily cancelled by producing a balance belween the positive and negative micrometer corrections before taking a final mean.
6. The results of the season's operations are as follows :-

| Station. | Longitade. | Height M.S.L. | Gcodetio Latitade= G. |  | Scoonds of <br> Astronomical Lntitade and probable arror $=\mathrm{A}$. |  | A-a. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Six Baluchieten Stations. |  |  |  |  |  |
|  | - , | f eet | - 1 | " | " | " | " |
| (i) Khojak | $\begin{array}{ll}66 & 37\end{array}$ | 7851 | $30 \quad 51$ | 24.85 | $20 \cdot 21$ | $\pm 0.061$ | - 4.64 |
| (ii) Quetta | $67 \quad 3$ | 5500 | 11 | $57 \cdot 37$ | 55.91 | $\pm 0.098$ | $-146$ |
| (iii) Macb | $67 \quad 21$ | 3522 | $29 \quad 52$ | 31.51 | $20 \cdot 46$ | $\pm 0.058$ | -11.05 |
| (iv) Dasti | $67 \quad 56$ | 316 | 0 | $29 \cdot 93$ | $27 \cdot 61$ | $\pm 0.058$ | $-232$ |
| (v) Dumb | $68 \quad 17$ | 183 | 2815 | 21.09 | 18:30 | $\pm 0.048$ | $-2.79$ |
| (vi) Sultān ka Got | 6939 | 213 | 4 | 9'41 | 8.05 | $\pm 0.045$ | $-1 \cdot 36$ |
|  |  |  | iwaslit Stati | ons. |  |  |  |
| (vii) Lachlua | $78 \quad 2$ | 2674 | 304 | 34.24 | 534 | $\pm 0.050$ | $-28 \cdot 90$ |
| (riii) Hatnj . | $77 \quad 69$ | 3096 |  | 1.52 | 31.93 | $\pm 0.096$ | -29.59 |
| (is) Bullawalla | $77 \quad 69$ | 2432 | 6 | 61.29 | 22:32 | $\pm 0.058$ | -28.97 |
| (x) Shorpur . | $77 \quad 68$ | 2916 | 13 | 44.43 | 18.30 | $\pm 0.073$ | -29.13 |

A negative value of (A-G) denotes a northerly attraction of the plumb line.
The topography of the stations-
(i) Khojak is on one of the peaks of the Khmāja Amrān range which runs from N.N.E. to S.S.W. in an almost straight line. The distribution of the mountain masses within a radius of 50 miles is such as to lead one to expect no marked deflection of the plumb line.
(ii) Quetta-Here again there is an apparent balance of masses to the north and south, and no cause for a deflection of the plumb line can be found.
(iii) Mach is situated on the Bolān valley about half way down from the point where the descent from the Dasht begins. There is a notable excess of mountain masses to the north of this station. To the south-east, the hills fade away into the plains, the foot being about 20 miles distant to the south, and the hills are much less lofty than to the north. A northerly attraction is therefore to be expected at this station.
(iv) Dasti is in the plains; the nearest hills are about 25 miles distant in a north-west direction. To the north the foot of the hills is about 40 miles distant. If we consider a belt lying betweon circles of 40 and 80 miles radius respectively, we may estimato that the portion of it from west to north-enst (clockwise) is occupied ly hills, the average height of which is 5,000 feot greater than that of the land nccupying the remaining then be-

$$
0^{\prime \prime} \cdot 000742 \times 5000 \times 1 \cdot 766=6^{\prime \prime} \cdot 6^{*}
$$

This may be taken to be a rough approximation to the effect of the visible masses within a radius of 80 miles of the station. If the investigation were extended, a larger attraction to the north would undoubtedly be indicated, for the country to the north is all elevated while that to the south is low-lying.
(o) Dumb is in the plains a few miles to the west of Jacobābād; the nearest hills lie about 30 miles to the north-east and 50 miles to the west, indicating that a northerly attraction might be expected.
(vi) Sultān ka Got is similar to Dumb, but the hills are now more remote.
(vii) Of the four Siwālik stations, Lachkua, Hatni, and Bullawalla are on the southern slopes of the Siwalik range (that is on the side remote from Delhra Dūn and the Himālaya), while Shorpur is on the main ridge of the range close to the Mohan Pass by which the Sahāranpur road enters the Dūn.
7. The deflections of the plumb line.-The deflections found at the stations in Baluchistān and Sind are remarkable in the first place for their smallness. $\dagger$ The hills of Baluchistān and Afghanistan, though they do not rival the Himālaya in height, are nevertheless a mighty mass, and in one respect have an advantage over the Eastern ranges as a source of attraction on the plumb line. The Himālaya are annually subjected to an extremely heavy rainfall, and in consequence great and numerous rivers have cut deep valleys for themselves, and left but a remnant of what the mass would have been but for the action of denudation and erosion. It is only beyond the great wall of the main Himàlayan range, which finally exhausts the monsoon current of its moisture, that an elevated plateau of any considerable extent is to be found; the latitude stations of the submontane tracts and of the outer range are therefore within close touch of ridges only, not of high plateaux.

In the arid regions of Sind and Baluchistān, however, the action of water has been much less, and within a distance corresponding ouly to that, for instance, of Simla from the plains, we come to wide expanses of elerated land, with peaks and ranges rising above them, but without deep valleys. In a computation of the effects of visible masses by the zone system it would be found that the mean height of the nearer, and therefore more important, zones

[^0]surrounding the Baluchistan stations, would not fall far short of that found at similar distances in the case of Himālayan stations.
8. The uniformity of the deflections at the three southermmost stations, Sultan ka Got, Dumb and Dasti, seems to indicate that the mountains to the north exert no effective influence. The form of these ranges however is not so simple as that of the Bimālaya; the lobe of mountainous country which has the appearance of having been squeezed through an aperture lying between Dera Gbäzi Khān and Sibi, and the tongue of flat land which extends from the plains of Sind up to the latter place, are remarkable features, and may point to a more complicated substructure than the ditch and hidden chain, parallel to the mountain range, which the deflections of the plumb line and the variations of gravity hare revealed in the region that lies under the shadow of the Himālaya.
9. It has been suggested with much plausibility that the whole of the mountains extending from Burma to Sistān are due to a surface flow or creep from the north-east which has encountered an obstacle in the continent of India. This obstacle has arrested the flow all along the line of the Himálayas from Sadiyā to Peshāwar, but there came to an end, so that the flow proceeded all along the Indus Valley forming the Sulaimān Mountains, the lobe alluded to above, and the ranges of Sistān and Makrān. It seems clear that a projection of the obstacle runs up to Sibi and that the mountain tide has flowed round it on two sides. What is the nature of the obstacle? If at the foot of the ranges there was a mass of archæan rocks, it might be readily conceded that it would offer the opposition postulated, but instead of a mass of ancient rock, there are wide plains of alluvial deposits the depth of which is known to be very great, pernaps as great as the height of the highest peaks that stand above them.

If the theory of the flow from north-east is correct, it seems clear that resistance must have been encountered at a great depth, and that the action may resemble that which causes breakers to rise, curl over and fall on the sea-shore. We do not, it is true, see the mountains taking the precise form of curling waves, but it must be recollected that the movements in the case of mountains are extremely slow, and that the uplifted mass is at all times suffering denudation by the action of rain, frost and wind, so that the softer portions, at any rate, are cut away almost as fast as they are raised.
10. The tongue of land that runs up from Shikarpur to Sibi and the line of the Indus are regions which deserve careful study. At Jacobābād, the pendulums shewed an excess of density, at Sibi a defect. More pendulum stations are required, or it is possible that the investigation could be more satisfactorily made by means of Baron Ë̈tvös's gravity balance, if we were equipped with one. In comparison with the sub-Himālayan tracts this region is ill provided with stations of triangulation at which latitude observations might be made with advantage, but if a good portable pendulum room could be devised there is no reason why a number of gravity determinations should not be made. Up the Indus Valley, the north and south lie of the mountain ranges deprives -n:casurements of the deflection of the plumb-line in the meridian of their value, but here again the pendulum would yield useful information.
11. The results of the observations in the Siwăliks are remarkable for their uniformity. It does not ceem to make any difference whether the station is on the southern slope, on the crest, or on the northern slope of this range, the deflection appears to be always about the same. The mass of the Siwāliks
isp however, small, and analysis may show that the observed deflections are satisfactorily accounted for by known causes; the greater distance of the stations on the southern Siwalik slope from the Himãlaya, and the greater proximity to the hidden chain, being sufficient cause for the slightly smaller northerly attractions of the plumb-line found there. It is doubtful whether we possess sufficiently detailed maps of the Siwäliks to permit of an analysis of such refinement as to explain differences of fractions of a seoond, but it will be possible at any rate to indicate limits within which the effects of the visible masses must lie, and to say, therefore, whether any special and invisible cause must be postulated to account for the observed phenomena.

## pendulum operations.

## No. 14 PARTY.

(Fide Index map 10).
By Major E. a. Tandy, R.E.
During the season 1910-11 pendulum observations were made in Burma,

Pebsonnel.
Imperial Officers.
Caplain II. M. Cowic, R.E., in charge up to 2nd May 1911

Major E. A. Tandy, R.E., iu charge from 9rd May 1911 .
Captain H. J. Youohman, R.E., attached from 26th September 1 日ll.

Pronincial Officer.
Mr. Hanuman Prasud. where gravity was determined at eleven stations fairly evenly distributed between Mogok in the north and Bassein and liangoon in the south.

The whole of the field work was done by Captain H. M. Cowie, R.E., assisted by Mr. Hanuman Prasad who took the time observations, and also did the pendulum computations during recess.

The following table gives the position and height of the stations visited :-

TABLE I.


Pucca buildings were provided at all stations, and conditions for control of temperature, etc., were quite satisfactory, with the following exceptions :-

At Bassein and Toungoo the floors were bad, and the rooms rather unsuitable and in bad repair, so that temperature control was very difficult; at Prome and Meiktila the temperature control also presented some difficulties on account of insufficient protection from the sun.

The average temperatures and their hourly variations are given in the following table:-

TABLE II.


- Observations for flexure were made at the commencement and close of work at each station. The following table gives the observed flexure corrections and the mean adopted for each station. The amounts range from $33^{5 \cdot} 5 \times 10^{-7}$ to $52^{6 .} 3 \times 10^{-7}$.

TABLE III.

2. Table IV shows the times of vibration of the four pendulums at Debra Dūn in October and April.

TABLE IV.

|  | Date. | 137 | 139 | 190 | 140 | Mean. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1910. |  |  |  |  |  |
| Oet. | 17-18 | (1).5072582 | 0.5074972 | 0 s 5071591 | 0'0070872 | 0.5072504 |
|  | 19-19 | 2562 | 4977 | 1572 | 0865 | 2494 |
|  | 19-20 | 2568 | 4959 | 1586 | 0860 | 2493 |
|  | 21-22 | 2579 | 4976 | 1599 | 0874 | 2507 |
| Means |  | 0 ${ }^{6.5072573}$ | 0-5074971 | 0'5071587 | 0'5070868 | 0.5072500 |
| Apl. | 1911. |  |  |  |  |  |
|  | 17-18 | 08.5072567 | 06.5074994 | 08.5071608 | 0"5070872 | 0.5072510 |
|  | 18-19 | 2557 | 4976 | 1596 | 0867 | 2499 |
|  | 19-20 | 2574 | 5007 | 1620 | 0884 | 2521 |
|  | 20-21 | 2545 | 4988 | 1601 | 0867 | 2500 |
| Means |  | $0^{8.5072561 ~}$ | 0-5074991 | 03.5071606 | 0 $0 \cdot 5070873$ | $0 \cdot 5072508$ |
| General means adopted for season. |  | $0^{5} \cdot 5072567$ | 0.5074981 | $0^{8.5071597}$ | 0s.5070870 | 0.5072504 |
| Differences, April-Oct. |  | -12 | +20 | +19 | +b | +8 |

In the Narrative Report for 1908-09 a diagram was given showing the variations in the time of vibration of each pendulum, as observed at Dehra Dunn at the commencement and close of each field season, from the time of the first observations in January 1904.

These curves bave been carried on to date, and it is interesting to note that, whereas the mean pendulum showed a change which would correspond with a decrease in gravity at Dehra Dūn of nearly 02 dynes between January 1904 and November 1909, since the latter date there has been a steady rise amounting to 01 dyne up to April 1911. While individual pendulums have their own fluctuations from the mean of the four, it is rather remarkable that in every one of them the curve is at its highest in January 1904 and at its $]_{\text {owest in }}$ November 1909, with a distinct rise since ; even the least conformable pendulum, No. 14(), falls 01 dynes between January 1904 and November 1909 and has risen 006 dynes since the latter date.

Gravity units have been used in the above discussion, not in order to suggest that changes in the force of gravity at Dehra Dūn are the true cause of those fluctuations, but to show the kind of significance they bear in relation to our general results.

In the present state of knowledge on the subject these variations are treated as being due to changesin length of the pendulums- (a change of length of $\frac{1}{6,100}$

## DIAGRAM SHOWING CHANGES

RATE OF VIBRATION OF PENDULUMS
AT
DEHRA DŪN
From Jany. 1904 to April 1911

ofan inch in the mean pendulum would cause a difference of 01 dynes in the result) ; and the gravity observed at all other stations is deduced on the assumption that gravity at Dehra Dūn is invariable, and that the fluctuations found there are due to instrumental changes which must be allowed for each season.

When however all the pendulums begin to show an accordance somewhat greater than one would expect from such obscure individual causes of fluctuation, it becomes desirable to consider the possibility of their all being similarly affected by some other exterior cause.

The above noted accordance seems sufficiently remarkable to deserve watching. The question has been referred to Captain H. M. Cowie, R.E., who has done all the observations of the last three years; but he was only able to say that he knew of no change in procedure, or in dealing with temperature or other conditions, which could account for the curve reaching a minimum in November 1909 or indeed for any change whatever during the whole period of his work ; and that in such foreign records as he had seen, no further grounds had been suggested for such changes. A diagram showing the curves of the mean pendulum and the separate pendulums up to date is attached.
3. In Table $V$ are shown the values of " $g$ " deduced for all stations, taking that at Delira Dūn as 979.063 dynes, together with the observed times of vibration of the mean pendulum from which these values are deduced.

TABLE V.


These rosults are summarised in Table VI, and compared with the theoretical force of gravity at the various stations in the usual manere ; the method boing as follows :-

The observed value " $s$ " is corrected first for height to reduce it to sea level ; then lor " mass," which consists of subtracting from it the clfeet of the layer of carth betwcen the station and sea-level, assuming that hayor to consist
of an indefinite table-land of normal density equal in height to the station; finally this correction for mass is modified by a correction for " terrain " which allows for actual irregularities of the ground within 35 miles of the station, which of course is usually not a level table-land.

We thus get a value $g_{0}{ }^{\prime \prime}$ which shows what we may suppose the observed value would have been if taken in an open plain at sea-level; this is then compared with $\gamma_{0}$, which is the theoretical value of gravity at sea-level as computed for the latitude of the station.

The differences $\mathrm{g}_{0}{ }^{\prime \prime}-\gamma_{0}$ shown in the last column, give the differences between theory and observation which we have to consider.


The practice of previous seasons, which accords with that of other coustries, has been followed in this matter; but, now that we are beginning to compare our results with various theories on the subject, it would perhaps make things clearer always to leave our observed result, g, alone, and to apply our varions theoretical corrections to our theoretical $\gamma_{0}$, distinguishing the gammas resulting from different theories by suitable suffixes, and then comparing them with the observed g.

In any broad comparison of different hypotheses this would appear to be the most straightforward plan, but of course the figures resulting from the comparisons will be the same in either case, and the objections to a break in the continuity of procedure have to be considered.

Under the present system it is hard to say what $g_{0}{ }^{\prime \prime}$ really is, as it consists of an observed quantity modified by theoretical corrections.
4. The time observations, by Mr. Hanuman Prasad, were made with the bent transit instrument by Messis. Troughton and Simms ; the probable error of the clock rate determined from observations on two successive nights was $\pm 0^{a .} 012$, the mean of the probable errors by single stars observed on two successive nights being $\pm 0^{\circ} 048$.
5. The chief theoretical enquiry before the party lay in a consideration of how our pendulum results would fit in with the isostatic theories put forward by Mr. Hayford after a comprehensive analysis of the results of the U. S. Coast and Geodetic Survey.

A preliminary study made it clear that the effect on gravity stations in India must be computed for the whole surface of the earth, as indicated by Mr. Hayford, before the results of his hypothesis could be adequately dealt with.

This work was therefore done, using the zones, compartments and method devised by Mr. Hayford for his own work.

The principle of interpolation was very freely used, and as a result three maps of India have been prepared, cach showing by contours the resultant effects of certain zones on any required point.

Sinall scale orographical maps in the Harmsworth Atlas were used for the outer zones 1-6, i.e., from the Antipodes to $27^{\circ}$ from the station. For the remaining zones Captain Cowie's Bathy-orographical Charts of Asia and the Indian Ocean were used up to zone 11 inclusive, bringing the work up to a distance of 400 miles from the station.

Indepondent estimations of the masses made by Lieutenant-Colonel LenoxConyngham and Captain Couchman shewed that the original estimation for each point in each map was probably correct within 0001 dynes; and suffcient points were employed in each case to keep the errors arising from interpolation within about $\cdot 0003$ dynes. It is therefore estimated that the total resultant effect of these 11 zones as estimated from the three maps will generally be correct within 001 dynes, and even in extreme cases the error could hardly approach :002 dynes. The accuracy of results is therefore quite up to requirements; and, considering our ignorance of the mean heights to our north and the mean depth to our south, the methods employed are distinctly more trustworthy than the data on which they are based.

It is not proposed to carry this general work for all India beyond zone 11, as the remaining zones within 400 miles can be more conveniently dealt with individually for any required station, using larger scale maps.

- It will now be a comparatively slight labour to get out complete Hayford corrections for any required station.

Captain Cowie computed out "Hayford" corrections for the ground within 100 miles of each of 42 pendulum stations last recess, and made some examination of the results on the assumption that, as all the stations lay within latitudes of $20^{\circ}$ and $30^{\circ}$, the effect of the outer zones would everywhere be minus in sign and would not vary very greatly in amount. The first assumption is correct, but a very rough attempt, in the case of 4 selected stations, to fill up the gap between the first 11 zones, computed this season, and 100 miles computed by Captain Cowie, seems to indicate that these outer corrections will amount to from - 010 to - 050 dynes.

Until these quantities are exactly worked out any discussion would be premature; but it seems probable that the general result for most parts of India, taking observed gravity minus gravity computed on Hayford's hypothesis, may be something like $+\cdot 050$; though in troughs of defective gravity such as at the foot of the Himalayas, the two quantities may agree pretty well.

This statement does not include the southern parts of the Peninsula, which have not yet been considered.

In connection with this rough estimate of $+\cdot 050$, it is interesting to note that this is exactly the mean residual obtained by Mr. Hayford in applying his hypothesis to 16 stations scattered over various parts of the earth, as given in his preliminary pamphlet on this subject.

# PART III. -TRIANGULATION. 

No. 15 PARTY.<br>(Fide Index maps 9 and 10).<br>By Major Mi. If. Tubyer, R.E.

The work of this party has for somo years been on the increase. In 1907

## Pebsonstrl.

Imperial offcers.
Majcr H. H. Tarner, R.E., in charge.
Lieutenant E. B. Carders, R.E.
Licutenant F. J. M. King, R.E.
Lieutenamt H. G. Bell, R.E.
Lieutenant K. Mason, R.E., attached up to 31st March 1911.

Procincial Officers.
Mr. H. B. Simons, up to 31st May 1911.
Mr. C. H. Treshan.
M. Abdul Hai.

Mr. V. D. B. Collins.
Mr. F. W. Smith.
Mr. V. P. Wainright.
Mr. G. A. Norman.
Mr. B T. Wyalt.
Mr. C. S. MoInnes.
Mr. Ablul Karim.
Mr. K. S. Gopalachari. the party consisted of personnel for em. ployment on one principal series. In the scason under review, three detachments have been employed on principal, three on socondary triangulation and three more on special work, consisting of the revision of heights on the great arc series, the selection of sites for base lines, and minor triangulation work in Kashmir to determine definitely the position and height of the peak Teram Kangri. The minor triangulation for topographical purposes in Kashmir was also included in this year's party programme, but the detachment carrying out this work was transferred on the 1st April 1911.

In order that the work of the party may be properly controlled, the officer in charge now remains permanently at head-quarters instead of as formerly taking charge of one of the detachments.

The secondary triangulation was initiated in 1908. The object aimed at was to give more frequent checks to the minor triangulation than were afforded by the principal work, and to provide secondary permanent marks, which will be available in future years for resurveys of the country. Present day experience has shown that it is essential that other marks in addition to those of the principal triangulation should be permanently preserved. Districts which were surveyed 50 years ago are now being resurveged, and owing to all traces of the old triangulation marks having vanished, the areas have to be re-triangulated. The ideal system would be to run secondary series along parallels one degree apart, closing them on principal meridional scries two degrees apart. For the present it must however suffice to run these longitudinal secondary series according to the requirements of the topographical work; $a^{2}$ fommencement is to be made during the coming season in the Southern and Eastern Cireles by running secondary series along parallels $12^{\circ}, 19^{\circ}$, and $23^{\circ}$.

The secondary stations have been made square in section in order to dis' tinguish them from principal stations, and they will be placed at distances from 10 to 20 miles apart.

Whon possible opaque siguals will be employed, and in order to facilitate the pole being maintainel in a perpendicular position, a hollow core, from 4 to


G. T. S. SINGLENG BUM.

Upper Irrawaddy Series, Upper Burma.
6.inches in diameter and 1 foot deep, will be left in the centre of the pillar in which the signal post will be inserted and supported by wooden struts. There will be a markstone with the usual $\odot$ at the base of this core. Should it be necessary to use a heliotrope or theodolite at any of these stations, it would be sufficiently accurate for topographical work to centre the heliotrope over the centre of the circle formed by the top of the core.

Of the three principal detachments one under Lieutenant Cardew continued the Upper Irrawaddy series in Upper Burma ; the expectation of connecting this series with the Mandalay meridional series this season has not been fulfilled ; but all stations that are likely to be utilized, have been built and provisionally fixed, and are available for use for topographical work. The actual connection must now be delayed until there is a prospect of the series being extended to the north-west to form a junction in Assam with the Indian triangulation. As there are some very large triangular errors in the two figures included between the sides Kumtung Bum-Löngre Bum and Singleng BumKauhto Bum, re-observations of these figures should if possible be undertaken. Five of the triangles have an error exceeding $1^{\prime \prime}$, and in one case it is nearly $3^{\prime \prime}$ The correspondence relating to the errors has been bound with the computa. tions of this season for easy reference, when the continuation of the series is undertalsen. As the rays at the station Kauhto Bum are grazing ones, it will be advisable in a revision to reject this station and build a new one to the west of it. Some notes as to the proposed connection with the Mandalay series have also been bound with the computations of 1910-11.

The second principal detachment under Lieutenant King continued the Great Salreen series in the Southern Shan States. As the work on this series has been stopped for the coming season, it should be noted that the best way of reaching Kengtung is by rail to Hsipaw and thence by road using mule transport.

The third principal detachment continued the new Kashmir series. Lieutenant Bell, who was in charge, had instructions to complete the triangulation as far as Gilgit ouly. This entailed observations at four stations and, although their average height reaches close on 16,000 feet and he had to descend to 3,000 feet between his ascents, he accomplished the work in a little under six weeks. On completion of the triangulation work, Messis. Bell and Wainright were employed on reconnoitring to the north of Gilgit.
'Their reconnaissances were undertaken for the purpose of selecting a route to carry the principal triangulation up to the Pāmirs and effect a junction with the Russian triangulation.

The results of their work prove that the extension of the principal work to the north will be impossiblo and that, if the Russian connection is made, it will have to be by means of seoondary triangulation carried up the Humza valley.

Of the secondary detachments one under Mr. Collins completed the Mawkmai Serics in the Southern Shan States. The other two wero employed in Assam. The one to the west, under Mr. Smith, triangulated through the Giro Fills and the other to the cast, under Mr. Abdul Hai, extended the Khasi Hills sories through the Jaintiā Eills.

During the summer of 1911 Messrs. Collins and Wyatt were employed in locating the position and fixing the height of the peak Teram Kangri which was thought by Dr. Longstaff to be an exceptionally high peak.

A description of the detail work of each detachment is given below ：－

Abstract of work done．

|  |  | Statione． |  |  |  | $\begin{gathered} \text { Thiangola } \\ \text { tion. } \end{gathered}$ |  | Triangular error． | Aatrommical <br> Aximuths obrervod． | Aatronomical minus Geodetio Azimath． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{aligned} & \text { 官 } \\ & \text { 邑 } \end{aligned}$ |  |  |  |  |  |
|  | ［ I－Upper Irrawaddy ． | 8 | 4 | 4 | 5 | 80 | 1，760 | $\begin{aligned} & 0^{\prime \prime} \cdot 875 \\ & \text { for } 10 \text { tri- } \\ & \text { angles. } \end{aligned}$ | 1 | $-7^{\prime \prime} 02$ |
|  | II-Great Salween | 5 | 4 | 3 | 6 | 74 | 2，200 | $\begin{aligned} & 0^{\prime \prime} \cdot 753 \\ & \text { for } 9 \text { tri- } \\ & \text { angles. } \end{aligned}$ | 1 | $-7^{\prime \prime} 95$ |
|  | III－Kashmir ．． | 4 | 4 | 2 | 2 | 64 | 880 | for $\begin{gathered}0^{\prime \prime} \cdot 606 \\ 8 \\ \text { tri－}\end{gathered}$ angles． | ．．． | ．．． |
| ． | V -Mewhmai . . | 15 | 11 | $\cdots$ | 1 | 68 | 500 | $\begin{aligned} & 2^{\prime \prime} \cdot 44 \\ & \text { for } 8 \text { tri- }- \\ & \text { nogles. } \end{aligned}$ | ．． | ．．． |
| 筞 | VI－Gäro Hills ．． | 11 | 9 | $\cdots$ | 12 | 60 | 703 | for $\begin{aligned} & 1 / 67 \\ & 6\end{aligned}$ angles． | ．．． | ．．． |
|  | VII－Jaintià Hilla－ | 24 | 23 | ．．＇ | ．＇• | 78 | 473 | $$ | ．．． | ．．． |

## Details of Principal Triangolation．

1．－Upper Irrawaddy Series．－This detachment，under Lieutenant Cardew， arrived in Myitkyinā on the 30th October 1910．After a week＇s halt spent in making preparations Lieutenant Cardew crossed to the east bank of the Irrawaddy and reached Matu Bum，his first station，on November 16th．

At the second station Singleng Bum，some diffculty was experienced in building a station on this hill，as the highest point consisted of a large rock，on the top of which there was not sufficient room to pitch the observatory tent． Eventually，the station pillar was built on the highest point of the rock and a wooden platform was constructed round it．

At the next station Marau Bum，the ray to Kauhto Bum was a grazing one．In order to improve it the signal Kauhto Bum was raised by erecting a wooden trestle 15 feet high and placing the lamp on the top of it．

Bumdaw Bum，the seventh station was reached on the 4th of March． This was to have formed the north－west corner of the figure by which a junc－ tion was to be made with the Mandalay Meridional series．However，Mr．Abdul Karim on visiting Taungthonlon，one of the Mandalay series stations， found that pagodas had been erected to the north of the station effectually blocking out the ray to Bumdaw．As the question of demolishing these pagodas had to be referred to the Civil authorities，the completion of the junction of the two series had to be postponed to a future season．

No．III 12＂Micrometer theodolite by Troughton and Simms was used for all observations．

II．－The Great Salueen Series．－This detachment under Lieutenant King，R．E．，arrived at Thazi on the 21st October．

The march to Loi Lung, the station where Captain Browne had ceased operations in 1908-09, was made viâ Taunggyi and Takaw and occupied six weeks. Along the route lamp squads were detached to occupy the stations to the west of Loi Lung.

On the 14th of February, Lieutenant King arrived at the fifti station Loi Hsam Hsum. From this time onwards, great difficulty was experienced owing to the haze which had set in.

Escorts were required for all work east of the Salween River and these were supplied by the Officer Commanding Military Police at Loimwe.

No. II 12" Micrometer theodolite by Troughton and Simms was used throughout the work.

ITI.-The Kashmir Series.-The detachment assembled at Rāwalpindi on the 27th of $\Lambda$ pril 1911 and then marched to Bāramula, from thence proceeding to Bandipur by boat. Licutenant. Bell, who was in charge of the work, made Bandipur the head-quarters of his office. As it would have been difficult to obtain sufficient local transport, the Kashmir authorities bad been asked to obtain Balti coolies from Skärdu; 70 of these were assembled at Bandipur and 50 more met Mr. Wainwright in Gilgit.

Lieutenant Bell left Bandipur on 21st May and marched viá Handwara and the Ladarwan pass into the Kishengangà Valley and then on to Rutha Pahar, snow lying there as low as 8,000 feet. As the hill is 14,800 feet high, great difficulty was experienced in establishing the lamp-squad on it. Chatiwala H. S. was the next objective and after placing the lamp-squad on this hill Lieutenant Bell proceeded viâ Niat to Liowi H. S., his first observation station.

Last year's report accounted for operations up to the end of August 1910; during September and October both forward and back observations were obtained at Rutha Pahar and the forward rays from Chatiwala were observed. These latter, owing to the difficulty of getting the $12^{\prime \prime}$ theodolite to the top of the hill, were observed with an $8^{\prime \prime}$ micrometer theodolite. At the time, it appeared that the $8^{\prime \prime}$ theodolite would have to be used at other forward stations but so far, the $12^{\prime \prime}$ theodolite has been carried to the tops of all the other stations and it is a matter for regret that the continuity of the work with this instrument has been broken by the work at Chatiwala.

Liowi, which is 17,480 feet high, is so far the highest station of the series. After estallishing a base camp at 13,000 feet on June 12th, Lieutenant Bell reached the top the next day and commenced observations the same evening. The thermometer at this station showed a minimum temperature of 20 degrees Fahreabeit, and the strain of observing in this temperature and at this altitude was considerable.

Owing to bad weather the observations were not completed till the 21st June. 'The descent of the hill was made the same day and Zinghi Shish, the next station, was reached on the 23 rd June. A few angles were observed the same day and then snow fell continuously till the 28th. The observations were horever completed on the 22 nd July. The portable lightning conductor, which was erected over the observatory tent was struck on one occasion at this station. On the way to Chamuri, the next station, a severe earthquake shock was experienced at Giine, in the Indus valley, causing a cliff close by to be precipitated into the river. As a contrast to the extreme cold so lately experienced on the hills, the hoat in the Indus Valley was so great that marching was only possible in the carly morning and late evening. Chamuri was reached on the Sth July
and observations were at once commenced and with a slight interruption by snow on the 11th, were carried on uninterruptedly up to the 12th. On that day, the observations were completed and the descent to the base camp made. The detachment then marched via Damot and the Pahote Nala to Gashu Shish, arriving there on the 19th July. Up to the 23rd, cloudy and snowy weather were experienced during the day, though the nights were clear, rendering observations to lamps possible. The work was completed on the 26 th. This concluded the programme of triangulation operations for the season, and Lieutenant Bell arrived at Gilgit with his detachment on the 28th July.

Mr. Wainright, who had been employed on building the forward stations of Bijhoo (on the slopes of Dubanni) and Dinaur, met Lieutenant Bell in Gilgit.

On the 1st August nearly all the khalasis under Babu Mahesha Nand started on their return journey to India. Lieutenant Bell and Mr. Wainright started the same day to carry out, respectively, reconnaissances of the Sakiz Jarab range and the Hunza valley with a view to the triangulation being carried by one of these routes to a junction with the Russian Triangulation. After completing their reconnaissances the two officers returned to Mussoorie arriving there on the 5th October.
IV.—Revision of Reights on the Great Arc Meridional Series.-It having been decided that a revision of the heights on this series south of parallel $24^{\circ}$ was necessary, the work was entrusted to Mr. Bidhu Bhusan Shome.

The detachment arrived at the south end of the Sironj base line on the 20th January 1911 and observations were immediately started.

Observations were carried out at 12 principal stations and the heights of 10 old stations were revised. The revised heights are in all cases less than the old heights, the differences varying from 3 to 7 feet.

Three stations, which were found to have been destroyed, were rebuilt.

## Details of Secondary Triangdlation.

$\boldsymbol{V}$.-The Maıkmai Series.-The detachment under Mr. Collins arrived at Pyinmanā on the 21st October 1910. Mr. Collins left the detachment to march to Loi-Kaw and, himself, proceeded to Taunggyi to interview the Superintendent, Southern Shan States, and rejoined his detachment at Loi-Kaw.

Mr. Collins first visited Suletaung H.S. to observe the angles left unobserved the previous season ; he was however unsuccessful in calling up the heliotropors posted at the stations Letpathaung and Le-Hpa-Antaung, and had to give up the observations of these stations; the work was carried out later in the season by Mr. Gopalachari, who was detached from the baso line detachment for that purpose.

Mr. Collins then proceeded to fill in the gap in the series between the sides Loi-Mē-tē-yam—Loi Üngson and Loi Mawng-Loi Kang Mong. On completion of this Mr. Collins proceeded to the eastern extremity of the series and inined up the series with the side Loi Pakhan-Loi Tum of the Monghsat series.

An adjustment of the Mawkmai series triangulation between the $M$ andalay and Monghsat series has not been made, as the average triangular error of the latter series is greater than that of the Mawkmai series. The average triangular error of the Monghsat series is given in Annual Report of $1892-93$ as $\mathbf{1}^{\prime \prime} \mathbf{0}$, whereas, if the computations are consulted, it will be found to exceed $3^{\prime \prime}$.

- VI.-The Gäro Hills Series.-This detachment under Mr. Smith arrived in Dhubri on the 14th October 1910.

The series emanates from the side Samding-Rangira of the Brahmaputra meridional series, and running east, was to make a junction with the Khäsi Hills serics which had been observed in the previous season. It was hoped that the junction would give further data as to the amount of movement of the stations of the Eastern Frontier Scries caused by the earthquake in 1897. Unfortunately Mr. Smith bad to close work without effecting the junction.

Great delay was experienced in commencing observation work owing to Mr. Norman, who was detailed to build the advanced stations, falling ill. Mr . Sinith had therefore to build the first few stations himself and then return and observe at them.

Mr. Smith commenced observations at Samding on the 8th January.
At the succeeding stations frequent delays were caused by the inclement weather, and towards the end of April nearly the whole of the detachment were ill with fever. Mr. Smith struggled on in the attempt to complete the junction with the Khāsi Eills series, but owing to the sickness and continued bad weather, he was obliged to give up the attempt.

A gap of some 20 miles between the two series consequently remains unobserved and this should be observed at the earliest opportunity.
VII.-The Jaintiä Hills Series.-Mr. Abdul Hai, who was in charge of this detachment, was employed during the hot weather in work in Kashmir, so that the detachment did not arrive at Gauhāti till November 18th, 1910.

The series was an extension to the east of the Khäsi Hills series, and as the stations had been built in season 1909-10, Mr. Abdul Hai had only the observ* ing work to do.

The series is based on the side Laidera-Dinghei of the Eastern Frontier meridional series and extends along parallel $25^{\circ} 30^{\prime}$ from meridian $91^{\circ} 50^{\prime}$ to reeridian $93^{\circ}$. Up to the Kappili river, the country consists of hills covered with trees from 80 to 100 feet high; after this, dense bamboo jungle is encountered.

## Triangulation to fix the Postition and Height of Teram Kangri.

Dr. Longstaff, in his explorations in Kashmir in 1909, discovered what he considered to be a very high peak; he located this peak approximately in latitude $35^{\circ} 38^{\prime} 30^{\prime \prime}$ and in longitude $77^{\circ} 7^{\prime} 30^{\prime \prime}$.

A detachment under Mr. Collins was sent to Leh with instructions to see if the peak was visible from any of Montgomerie's stations in that neighbourhood; and if not, to run a short series of triangulation, northwards, based on a side of Montgomerie's series until the peak became visible.

Mr. Collins arrived in Leh early in June and proceeded to visit the stations Tayār and Arzū of Montgomerie's series, while Mr. Wyatt went to ' Pachuspha, Himis, Pārchākanri and Lasirmau, but neither officer succeeded in obtaining a view of Teram Kangri. Mr. Collins consequently decided to make a reconnaissance up the Nubra Valley, leaving Mr. Wyatt to bring up the triangulation.

Mr. Collins first attempted to climb Skanpuk H. S., 20,288 feet, but owing to recent falls of heary snow, he could not reach the top, though later in the scason, he made the ascent and took obserrations from it. He then proceeded
up the Nubra Valley, visiting peaks on both sides of the river. The first sight of Teram Kangri was obtained from Wasak station," and obscrvations were later on obtained from Ningstet, Strongstet and Tiggur. The distances of these stations from Teram Kangri vary from 39 to 69 miles.

The work has been finally based on Skanpuk-Peak 3 (Shyok Watershed) See Synoptical Volume VII. These two peaks are intersected points of triangulation executed in the year 1861. It is unfortunate that the triangulation could not be based on Montgomerie's series but, owing to Peak 3 being inaccessible and the intersections to it having been made by two separate observers, it has been thought better to accept the old values for that peak, rather than that obtained from the present triangulation. If possible, Mr. Collins will close his work on Montgomerie's series next year. The work is sufficiently accurate to establish without doubt the position and height of Teram Kangri.

The position of Teram Kangri computed from Mr. Collins' observations is Latitude $35^{\circ} 34^{\prime} 37^{\prime \prime}$, Longitude $77^{\circ} 07^{\prime} 31^{\prime \prime}$ and its mean height 24,489 feet, using a coeficient of refraction of 0.035 .

The following are the results of the heights obtained from the vertical angles taken from the four stations of observation :-


In executing the work Mr. Collins climbed to the top of 16 peaks of over 19,000 feet and Mr. W yatt climbed 7 peaks of over 19,000 feet.

## Base-line Reconnatssance.

The detachment arlived in Myitlyna on the 28th October 1910, but Mr. McInnes, who was in charge of the work, did not arrive till the 7 th November, having been employed on work in Kashmir during the hot weather.

On the 12 th November Mr. McInnes commenced reconnoitring the surrounding plain, but owing to the numerous large swamps no suitable site could be found.

On the 1st December the detachment moved on to Bhamo and a site was finally selected between the Taping Chaung and the Mole Chaung.

The length of the line selected is about 8 miles. The forest has been clearol along the lino to a width of 10 feet and pillars $1_{2}^{1}$ fect square and 1 foot 'high, have been built along the line at intervals of about 1 mile. A dot on the tap of each pillar marks the actual line. The pillars are so placed that from each of the intermediate pillars at least one forward and one back pillar is visible. The ends as at prosent situated are not intervisible. The line can 'easily le connected to the surrounding principal triangulation.

On the complotion of tho work at Bhamo, Mr. Gopalachari, who had assisted Mr. McInnes, proceeded to the Southern Shan States to carry out olservalions at a station on the Mitwhmai series which had unavoidably been omitted.

- Mr. McInnes, with the other half of the detachment, proceeded to Toungoo on the 21st February and after reconnoitring the country there, went on to Prome.

At Prome he selected a line about 13 miles long and prepared it in the same manner as that at Bhamo. The ends of this line, as set out, are intervisible.

It is probable that the line prepared at Bhamo will not be suitable, and a further reconnaissance in Upper Burma will have to be made to select a more favourable site.

## - Indo-Russian Triangulation.

The question of the connection of the Indian and Russian triangulation was first discussed at the International Geodetic Conference sitting in London in the year 1909. The route suggested for the connection was through Kashmir and the Russian Pämirs. The actual request for the work to be initiated by Indian triangulators was not received by the Surveyor General of India until the early part of the year 1911.

On the Russian side, the work of bringing their triangulation south was commenced in June 1910 by Lieutenant-Colonel Tchekine from the base Ourtak-Tchoucour-Machali-Goudour, approximately in latitude $39^{\circ} 33^{\prime}$ situated on the northern slope of the Trans-Alai chain of mountains. During 1910, he carried his triangulation down to the Pāmir post, approximately to latitude $38^{\circ} 13^{\prime}$. During the summer of 1911, the triangulation has been extended to the Russian frontier, and two stations Beyik, 15,078 feet, approximate latitude $37^{\circ} 18^{\prime}$, approximate longitude $75^{\circ} 7^{\prime}$ and Taghramansu, approximate latitude $37^{\circ} 16^{\prime}$, approximate longitude $74^{\circ} 5 k^{\prime}$, have been fixed; it now remains for the Indian triangulators to close their work on these two stations.

Owing to the necessity of first making a reconnaissance towards the Pāmirs, the work on the actual Kashmir principal triangulation was curtailed during 1911 but nevertheless, Lieutenant Bell has extended the work northwards to just south of parallel $36^{\circ}$.

The Surveyor General had asked that Concord Peak and Salisbury Peak on the Russo-Afghan Frontier might be fixed by the Russian triangulators, so that they might be observed from stations selected on the Sakiz Jarab range. Lieutenant Bell, however, reports in his reconnaissance that the peaks of the Sakiz Jarab range are inaccessible, and on the Russian side a report has been received that Concord Peak, owing to the view to the south being entirely shut off by higher ranges, is unsuitable. This being the case this method of forming the junction of the two triangulations has been abandonel.

Mr. Wainright who made a reconnaissance up the Hunza Valley reports that it will be possible by means of short-sided triangles to carry the triangulation from parallel $36^{\circ}$ up the Humza Valley to the Kilik Pass. The tro most northerly stations suggested by General Lieutenant Pomerantzeff (of the Russion General Staff) for the Indiau triangulators, are the Kilik pass 15,600 fect, approximate latitude $37^{\circ} 5$, approximate longitude $7 \cdot \operatorname{tr}^{\prime} \cdot 3^{\prime}$ ' and the Mintalia pass, 15,430 fect, approximate latitude $37^{\circ}{ }^{\circ} 2^{\prime}$, approximato longitude 7. 's 57 '. Judging from the work carried out by Mr. Waiuright, there should be no difficulty in bringing the Indian triangulation up to these stations.

The Indian triangulation up to parallel $36^{\circ}$ is of the highest degree of accuracy; all stations, with the exception of tho forward rays at one, haring been observed with a 12 micrometer thcololito. In carrying it on up the

Hunza Valley the sides of the triangles will have to be considerably shortened and the work will probably have to be done with an $8^{\prime \prime}$ micrometer theodolite and the accuracy of the work considerably reduced. Observations will be taken on six zeros with four measures on each zero, and whether luminous or opaque signals are used in the work, the assurance can be given that the work will be of the very best secondary class, and will equal in quality that of the Russian triangulation, as extended from their base north of the Trans-Alai Mountains.

The question arises, will this secondary work be of sufficient geodetic value o satisfy the International Geodetic Conference, and if not, is there any possibility of making a better connection between the Russian and Indian triangulations. Afghānistān extending all along the North-West Frontier of India presents at present an impassable barrier. We have therefore to turn to the far western corner, where the Indian triangulation extends to the Persian frontier. By carrying the triangulation over this frontier along parallel $29^{\circ}$, it might be brought to a point south of the Russian Caspian triangulation, and it would be a simple matter, provided the country is favourable, for the Russians to run a series due south to meet this proposed western extension of the Indian triangulation.

Report of Reconnaissance for the proposed connection with Russia.

By Lieut. H. G. Bell, R.E.

The Darkot pass was first visited by way of the Yāsin Valley, with a view to examining the peaks in its vicinity. The pass itself consists of a formidable glacier much intersected by crevasses and is only passable early in the morning. It was hoped that peak 19,369 feet, west of the pass, might prove suitable for a station; but it was found to be quite inaccessible for survey purposes. The surrounding and lower peaks, in addition to being practically inaccessible, would have been useless owing to higher and inaccessible peaks to the south and soutl-east.

From Darkot, the valley leading to Garmush 20,564 feet was visited ; all the valleys leading to the foot of this mountain are blocked by dangerous glaciers, and the slopes of the mountain are so precipitous that the snow does not remain on them, hence it was considered impracticable for a station. Then the DarkotAskuman Pass was crossed and a peak to the south ascended and a further view of the Garmush and other peaks of the Sakiz Jarab range obtained. The whole range consists of nothing but extremely sharp and precipitous peaks, while south of it between the Yāsin and Karumbar Valleys there are many high peaks unmarked on the existing map.

Since the physical features of the country made it impossible to select suitable stations for a principal series cast of the Darkot Pass, a move was made to the Karumbar Valley in the hopes of being able to find a way through in this direction. The valley is wide and bordered by moderately high and accessille peaks as far as Imit or Harmat, but from here northwards, the valley closes in and the mountains rise precipitously from the river bed; there is no way along the western bank and progress in that direction is further barred - by a landslip which discharges rocks and earth into the river night and day. It was impossible at the time of year to penetrate further up the valley than tho Karumbar glacicr, for the road which crosses and re-crosses the river was impassable owing to the river being in flood. However, as the whole valley hod
not been reconnoitred, it was decided to make a second attempt when the river subsided ; in the meanwhile news was received that a feasible route had been found up the Hunza river, so as it wasgetting late in the season, further reconnaissance was abandoned.

## Hunza Valley Reconnatssanoe.

By Me. V. P. Wainilgit.
Owing to the high and inaccessible peaks that border the valley on either side, it was found necessary to keep as close as possible to the main watercourse; the whole length of the river was thus followed from Gilgit to the Kilik pass, approximately 170 miles.

The base at the pass was first selected from where the view was extensive, especially northwards towards Russia, where peaks 150 miles off were visible. This part being uninhabited except for shepherds, it was impossible to obtain coolies, and consequently the next four stations were not visited; but being prominent peaks were fixed from surrounding stations. Owing to this difficulty it would be advisable not to follow the Hunza river further than Misgar, the last village met with on the Gilgit-Pämir route, but continue up the Khungarah river towards the Kharchanai pass, which appeared to be easy country in comparison to that between Misgar and the Kilik pass.

All the peaks that have been fixed are easy and lie between 8,000 and 17,000 feet. The two highest being those of the Kilik base.

The road between Hunza and Misgar is extremely bad and it would be practically impossible to take any large instrument along it ; the worst bit is between Attabad and Gulmit where sheer cliffs have to be crossed on wooden beams placed along the face of cliffs and supported by iron pegs driven into the rock.

# PART IV.-TIDAL OPERATIONS. 

No. 16 PARTY.

(Fide Index map 10).
By Major J. M. Boin, R.E.
During the past year tidal registrations by self-registering tide-gauges

Personnel.

Imperial Officers.
Mr. C. F. Erakine, in chayge up to 14th Octo. ber 1910,
Major' J. M. Burn, R.E., in charge from 15th to 26 th October 1910, and again from 27 th November 1910.

## Proviacial Offeers.

Mr. H. G. Shaw, in charge from 27 th Ootober to $\because 6 \mathrm{th}$ Nov-mber 1910 . Mr. Syed Zille Hasnain.
were recorded at the ports of Aden, Karāchi, a pollo Bandar (Bombay), Prince's Dock (Bombay), Madras, Kidderpore, Rangoon, Moulmein and Port Blair. In addition, tide-pole readings of high and low water were taken during daylight at the ports of Bhārnagar, Akyab and Chittagong, with the object of comparing the actual times and heights with the predictions. From lst January 1911 the tide-pole readings at the port of Chittagong were discontinued, and in their place the readings of the diagrams recorded on a small self-registering tide-gauge erected by the port authorities have been utilised.

All the observations were made under the direction of this department and under the immediate control of the Port Officers concerned.

The reduction by harmonic analysis of the observations for 1910 of the 9 stations named above has been completed. The tide-tables for 1912 have arrived in India and have been distributed. The work of publication of the tidetables for 40 ports for the year 1914 is in progress in England. Data for these predictions were despatched from this office in January 1911.

## List of Tidal Stations.

The following table gives a list of the 42 ports at which tidal observations have been registered, together with the periods of observation from 1874, when tidal operations were commenced, up to the present time. The stations shown in italics are permanent; the others are minor stations which were closed on the completion of the requisite registrations.

| $\begin{gathered} \text { Serial } \\ \text { No. } \end{gathered}$ | Stations. | Antomatic or parsumal observatione. | Date of commencement of observa tions. | Dite of clo-ing of obsorvations. | $\left\lvert\, \begin{gathered} \text { Numbor } \\ \text { of yoars } \\ \text { of ofluorva- } \\ \text { tiong. } \end{gathered}\right.$ | Remaris. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Suez | Automatic | 1897 | 1903 | 7 |  |
| 2 | Perim | Ditto | 1898 | 1902 | 5 |  |
| 3 | Aden | Ditto | 1879 | Still working | 32 |  |
| 4 | Maskat | Dittn | 1803 | 1898 | 5 |  |
| 5 | Bushire | Ditto | 1802 | 1901 | 8 |  |
| 0 | Karāchi | Ditto | $\begin{aligned} & 1868 \\ & 1851 \end{aligned}$ | 1880 <br> Still worlsing | $\left.\begin{array}{c} 13 \\ 31 \end{array}\right\} 44$ | - Small Tide-Gauge working. |
| - 7 | Lan ${ }^{\text {a }}$ al . | Jitto | 1874 | 1875 | 1 | Tide-Tables not published. |
| 8 | Navânci | - Ditto | 1874 | 1875 | 1 | Ditto. |
| 9 | Okha Puint | - Ditto |  | 1875 19006 | $\left.\begin{array}{l} 1 \\ 1 \end{array}\right\}$ | Year 1904-00 is excluded. |
| 10 | Prortandar | Personal | 1893 | 180.4 | 2 |  |


| Serial No. | Stations. | Antomatio or persozal observations. | Date of oommencement of observatione. | Date of olosing of observationg. | Namber of years of observations. | Bryarig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10A | Porbandar . | Automatic . | 1898 | 1902 | 2 | Years 1898, 1899 and 1902 ars exclided. |
| 11 | Fort Albert Victor (Kāthiāwer). | Personal | 1881 | 1882 | 1 |  |
| 11A | Port Albert Victor (K焐hiamar). | Automatic . | 1900 | 1903 | 4 |  |
| 12 | Bhārnagar . . | Ditto . | 1889 | 1894 | 5 |  |
| 13 | $\begin{aligned} & \text { Bombay } \\ & \text { Bandar). } \end{aligned} \quad \text { (Apollo }$ | Ditto | 1878 | Still working | 33 |  |
| 14 | Bombay (Prince's Dock). | Ditto . | 1888 | Still working | 23 | Property of Port Trust. |
| 15 | Marmagao (Goa) | Ditto | 1884 | 1889 | 5 |  |
| 16 | Kãr®ār . . . | Ditto | 1878 | 1883 | 5 |  |
| 17 | Bespore | Ditto | 1878 | 1884 | 6 |  |
| 18 | Coohin . . | Ditto | 1886 | 1892 | 6 |  |
| 19 | Tuticorin. . | Ditto | 1888 | 1893 | 5 |  |
| 20 | Minicoy . . . | Ditto | 1891 | 1896 | 5 |  |
| 21 | Galle . | Ditto | 1884 | 1890 | 6 |  |
| 22 | Colombo | Ditto | 1884 | 1890 | 6 |  |
| 23 | Trincomalee . . | Ditto | 1890 | 1896 | 6 |  |
| 24 | Peemban P'ass . . | Dito . | 1878 | 1882 | 4 |  |
| 25 | Negapatam . | Ditto | 1881 | 1888 | - | Years 1883-1834, 1885 are excluded. |
| 26 | Madras . . | Ditto | $\begin{gathered} 1 \& 80 \\ \text { Re-started } \\ 1895 \end{gathered}$ | 1890 Still working | $\left.\begin{array}{l} 10 \\ 16 \end{array}\right\} \geq 6$ |  |
| 27 | Cocanāda . . | Ditto | 1886 | 1891 | 6 |  |
| 28 | Vizagaןatam . . | Ditto | 1879 | 1985 | 6 |  |
| 29 | False Point . | Ditto | 1881 | 1885 | 4 |  |
| 30 | Dablat (Sōgar Islnad) | Vitto | 1881 | 1886 | 5 |  |
| 31 | Diamond Harbour | Ditto | 1881 | 1886 | 5 |  |
| 32 | Kidderpore . . | Ditto | 3881 | Still working | 30 |  |
| 33 | Clittagong . . | Ditto | 1886 | 1891 | 5 |  |
| 34 | Alsyab . | Ditto | 1887 | 1892 | 5 |  |
| 35 | Diamond Island | Ditto | 1805 | 1899 | 5 |  |
| 3 C | Bassein (Burma) | Dilto | 1902 | 1903 | 2 |  |
| 37 | Elophant Point | Ditto . | $\begin{gathered} 1880 \\ \text { Re-started } \\ 189 \downarrow \end{gathered}$ | 1881 1888 | \} 5 | Year $1880-81$ is exoluded. |
| 38 | Rangoon . . | Ditto . | 1880 | Still working | 31 | , |
| 39 | Amherst . . | Ditto | 1880 | 1886 | 6 |  |
| 40 | Moulmcin . . | Dit'o . | $\begin{gathered} 1880 \\ \text { Ru-started } \\ 1 \cup 09 \end{gathered}$ | 1886 Still working | $\left.\begin{array}{l}6 \\ 2\end{array}\right\} 8$ |  |
| 41 | Morgui . . . | Ditto | 1889 | 1894 | 5 |  |
| 42 | Port Blair | Ditto . | 1880 | Still working | 31 |  |

## Working of the observatories.

The nine tidal observatories now working were inspected during the year by Mír. Syed Zille Basnain.

Adcn.-As mentioned in last year's report the communication hole at the bottom of the float cylinder had become too large. It was therefore removed during this year's inspection, and a new cylinder which was made by the Port Engineer was fixed in its place. The tide-gauge was found to have worked satisfactorily since the last inspection. It was thoroughly cleaned and overhauled.

Earāchi.--This observatory was found in good order. The communication hole at the bottom of the cylinder was partially blooked by barnacles. It was thoroughly cleaned and the tide-gauge was overhauled and left in working order. There have been no breaks in the tidal registrations during the year.

Apollo Bandar (Bombay). -This observatory has worked well throughout the year. There was one minor interruption in the registration of the tidegauge.

Prince's Dock (Bombay).-There have been a few short interruptions in the registration of the tidc-gauge at this observatory owing to the pencil wire breaking.

Madras.-As the sluice at the bottom of the well of this observatory through which communication between the sea and the well is regulated had not been working satisfactorily for the past two years, steps were taken during this year's inspection to have it removed and replaced by a new one. This work took some days, and the registrations of the tide-gauge were consequently stopped from the 10th to the 21st February 1911. Opportunity was also taken to have the well thoroughly cleaned and repaired. With the exception of the above break, there have been no interruptions in the tidal registrations during the year. The old entrance to the harbour which was immediately south of the observatory has now been closed, and a new entrance has been made in the north arm of the harbour.

Ridderpore.-The tide-gauge at this observatory has worked well throughout the year. There was only one interruption of a few hours in the registrations owing to the stoppage of the driving clock. The inspecting officer found that a grood deal of mud had collected near the bottom of the cylinder which was likely to interfere with free communication between the sea and the cylinder. The matter having been brought to the notice of the Deputy Conservator of the Port, the necessary dredging was oarried out.

Ranyoon.-There have been no breaks in the registrations of the tide-gauge at this observatory during the year. The tide-gauge and the auxiliary instruments were thoroughly cleaned and put in order.

Moulmein.-The tide-gauge at this observatory has worked well during the - year, except for a few minor interruptions in its registrations owing to the stoppage of the driving clock. The inspecting officer found the graduated staff inaccurately divided. It was therefore removed and a new graduated staff was prepared and fixed in place of the old one.

Fort Blair.-There has been only one interruption of a few hours in the registrations of the tide-gauge at this olservatory owing to the stoppage of the drivinge clonk. During the inspection the zoro of the graduated staff was found
todiffer by 0.1 of a foot from the zero of the tide-gauge. The staff was removed and refixed in its proper position so that its zero is now identical with the zero of the gauge.

Tidal diagrams and daily ueports.
The tidal diagrams and daily reports have been submitted regularly to the office of this party by the various port officials concerned.

Tidal constants.
The tidal observations at the nine working stations for the year 1010 have been reduced, and the tabulated values of the tidal constants thus determined are appended. There are no arrears.

The following tables give the amplitudes (R) and the epochs ( $($ ) deduced from the 1910 observations at the various stations; they also give the values of $H$ and $\kappa$ which are connected with $R$ and $\zeta$ in such a way, through the various astronomical quantities involved in the positions of the sun and moon, that if the tidal observations were consistent from year to year $H$ and $\kappa$ would come out the ame from each year's reductions.

Aden, 1910.
Short Period Tides.
$A_{0}=5.836$ feet.


Long Period Tides.

|  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$\mathbf{K}_{\text {aliàcili, }} 1910$.
Short Period Tilles.


Long Period Tides.

|  |  |  |  | R | $\zeta$ | H | $\boldsymbol{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lunar Monthly | Tide | - | - | . 018 | $188^{\circ} \cdot 97$ | .019 | $270^{\circ} .07$ |
| 1) Fortnightly | " | - | - | . 046 | $75^{\circ} .51$ | . 036 | $20^{\circ} \cdot 91$ |
| Luni-Solar " | " | - | - | -011 | $356^{\circ} \cdot 49$ | $\cdot 011$ | $120^{\circ} 79$ |
| Solar-Annual | " | . | - | $\cdot 137$ | 1650.26 | $\cdot 137$ | $88^{\circ} 39$ |
| " Semi-Aunual | " | - | - | $\cdot 147$ | $329 \times 185$ | $\cdot 147$ | $170^{\circ} \cdot 00$ |

Bombay (Apollo Bandir), 1910.
Short Period Tides.


## Long Period Tides.



Bombay (Prince's Dock), 1910.
Short Period Tides.


Long Period Tides.


Madias, 1910.
Short Period Tides.


## Long Pcriod Tides.



Kidderpone, 1910.
Short Period Tites.


Long Period Tides.

|  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Rangoon, 1910.
Short Period Tides.


## Long Period Tides.

|  |  |  |  | R | $\zeta$ | H | $\kappa$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lunar Monthly | Tide | - |  | -183 | $238^{\circ} \cdot 83$ | $\cdot 197$ | $17^{0.86}$ |
| " Fortnightly | " | - | - | $\cdot 173$ | $98^{\circ} .33$ | 136 | $41^{\circ} \cdot 60$ |
| Luni-Sular " | " | - | - | -404 | $286^{\circ} \cdot 80$ | $\cdot 412$ | $4.9{ }^{\circ} \cdot 19$ |
| Solar-Annual | " | . | - | 1.285 | $231^{\circ .63}$ | 1-285 | $151^{\circ} \cdot 63$ |
| 1)Somi-Annual | " | - | - | -262 | 159 ${ }^{\circ} \cdot 70$ | -262 | 953 $3^{\circ} \cdot 68$ |

Mouluein, 1910.
Short Period Tides.

## $\mathrm{A}_{\mathrm{o}}=8.6 .3$ feet.



Long Period Tides.


Port Blair, 1910.
Short Period Tites.


Long Pcriod Tides.


## Oteer compotations.

The actual times and heights of high and low water for 1910 at 12 ports have been compared with the predicted values published in the tide-tables, and the results tabulated.

Sale of tide-tables.
The amount realized on the sale of tide-tables during the year ending September 1911 is Rs. 2,550-9.

## Data formarded to England.

The following data were supplied to the Director, National Physical Laboratory, Teddington, England: -
(i) Values of the tidal constants for the tide-tables for 1914, ready for use in the tide predicting machine.
(ii) Actual values during 1909 of every high and low water, measured in duplicate from the tidal diagrams at 9 stations, and of tidepole observations taken during daylight at 3 stations, the latter under the supervision of the Port Officers, and supplied by them to this office.
(iii) Comparisons of the above with predicted values for 1909, the errors being tabulated in such form as to be of use in improv. ing the predictions.

## Errors in predictions.

The five tabular statements which are appended, show the percentage and amount of error in the predicted times and heights of high and low water for the year 1910 at 12 stations, as determined by comparisons of the predictions given in the tide-tables with the actual values mensured from the tidal diagrams at 9 stations, and from the tide-poles at 3 stations; the former are made in this office, and the latter by the port officials concerned.

No. 1.
Statement showing the percentage and the amount of the errors in the predicted times of high water at the various Tidal Stations for the year 1910.

| Stations. | Automntic or <br> Tide-pole obserfations. | Number of comparisons Lotriecn netual and predioted valueg. | $\begin{aligned} & \text { Errors } \\ & \text { of } \\ & 5 \text { minntcs } \\ & \text { and } \\ & \text { under. } \end{aligned}$ | Errors oper <br> 5 minutes and nnder 15 minates. | Errorsover 15 minutes and nider <br> 20 minates. | Errors over 20 minutes abd under 30 minutos. | $\begin{gathered} \text { Errors } \\ \text { orcr } \\ 30 \text { minutes. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aden | Auto. | 670 | Per cent. 36 | Por cent. | Per cent. 10 | Per cent. | Por cent. 3 |
| Karāchi . | Auto. | 706 | 32 | 45 | 11 | 10 | 2 |
| Bhūvuagar . | T. P. | 365 | 58 | 42 | 0 | 0 | 0 |
| Apollo Bundar | Auto. | 704 | 95 | 46 | 9 | 8 | $\geq$ |
| Bombay \{ Irince's Dock . | Auto. | 696 | 96 | 4.4 | 9 | 8 | 3 |
| Madras . | Auto. | 705 | 35 | 52 | S | 4 | $1{ }^{\text {J }}$ |
| Kidicrpore | Auto. | 70.4 | 18 | 30 | 15 | 22 | 15 |
| Chittageng | T. P. | 369 | 20 | 20 | 9 | 19 | 310 |
| Alyab. | T. Г. | 36.4 | 98 | 2 | 0 | 0 | 0 |
| Rangoon | Anto. | 705 | 37 | 39 | 10 | 15 | 6 |
| Moulmein | Auto. | 701 | 21 | 92 | 1.4 | 18 | 15 |
| Port 13mix | Auto. | 76.5 | 30 | 40 | 10 | $s$ | 3 |

No. 2.
Statement showing the peicentage and the amount of the errors in the predicted times of low water at the various Tidal Stations for the year 1910.

| Stationg. |  | Number of oomparianos botweenu netunl and predicted palues. |  | $\begin{aligned} & \text { Errorg over } \\ & 5 \text { minates } \\ & \text { nnd } \\ & \text { nnder } \\ & 13 \text { minutes. } \end{aligned}$ | Errors ovo 15 minntes and under 20 minutea | Errora ove 20 minutes and under 30 minatos | Errors over 30 minates. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Per oont. | Per cent. | Per ceat. | Por cent. | Per cent. |
| Aden | Auto. | 667 | 36 | 40 | 10 | 9 | Б |
| Karăchi | Auto. | 705 | 34 | 45 | 9 | 9 | 3 |
| Bliăraígor | T. P. | 365 | 54 | 45 | 0 | 1 | 0 |
| ( A pollo Bandar . | Auto. | 705 | $3 E$ | 41 | 10 | 8 | 3 |
| Bonibay \{ Prince's Dock . | Auto. | 698 | 38 | 43 | 10 | 7 | 2 |
| Madras | Auto. | 705 | 44 | 47 | 5 | 3 | 1 |
| Kidderpore | Auto. | 706 | 16 | 33 | 13 | 21 | 17 |
| Chittagong . . . | T. P. | 361 | 26 | 28 | 12 | 15 | 19 |
| Alyab . . . . | T. P. | 385 | 97 | 3 | 0 | 0 | 0 |
| Rangoon . . . | Anto. | 705 | 25 | 38 | 15 | 17 | 5 |
| Moulmein | Aato. | 705 | 17 | 28 | 12 | 18 | 25 |
| Port Blair . . . | Aato. | 703 | 44 | 45. | 7 | 3 | 1 |

No. 3.
Statement showing the percentage and the amount of the errors in the predicted heights of high water at the various Tidal Stations for the year 1910.

| 8tationg. |  | Namber of comparioons between actual and predicted zalues. | $\begin{gathered} \text { Mean } \\ \text { ragge } \\ \text { at } \\ \text { sprivgs } \\ \text { in fot. } \end{gathered}$ | $\begin{aligned} & \text { Errors } \\ & \text { of }{ }^{\text {inalhas }} \\ & \text { and } \\ & \text { undder. } \end{aligned}$ | $\begin{gathered} \text { Errors over } \\ \text { 4inothes } \\ \text { and } \\ \text { nander } 8 \\ \text { inolhe日. } \end{gathered}$ | Errors over <br> 8 inolies and ander 12 iuches. | $\underset{\text { Errors }}{\text { Over } 12}$ inches. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Per cent. | Per cent. | Per oent. | Per cent. |
| Aden | Auto. | 670 | 6.7 | 93 | 7 | ... | ... |
| Kavąchi . | Auto. | 706 | $9 \cdot 3$ | 78 | 20 | 2 | ... |
| Blasnogar | T. P. | 365 | 31.4 | 61 | 31 | 6 | 2 |
| Bumer $\left\{\begin{array}{l}\text { Apollo Bandar }\end{array}\right.$ | Auto. | 704 | 13.9 | 68 | 27 | 4 | 1 |
| Priuce's Dock | Auto. | 696 | 13.9 | 70 | 24 | 6 | ... |
| Madrab . | Auto. | 705 | 3.5 | 72 | 26 | 2 | ... |
| Kidderpore ! . . | Auto. | 704 | 11.7 | 34 | 25 | 17 | 24 |
| Chittagong | T. P. | 359 | 13.3 | 34 | 25 | 18 | 23 |
| Akyab, | T. P. | 384 | $8 \cdot 3$ | 85 | 14 | 1 | ..' |
| Rangoon | Suto. | 705 | 16.4 | 51 | 26 | 14 | 9 |
| Moulmein | Auto. | 701 | 12.7 | 30 | 24 | 20 | 26 |
| Port Blair | Auto. | 705 | $6 \cdot 6$ | 00 | 10 | ... | ... |

No. 4.
Statement showing the percentage and the ansount of the errors in the predicted heights of low water at the various Tidal Slations for the year 1910.

| Stations. | Automatio or <br> Tido-pule observations. | Number of oomparisons betwecn eotral nnd prediotod values. | Mean rungo at apringe, in foot. | Eriois of 4 inches ntuld under. | Errora over 4 inohes and under $\theta$ inclus. | Ertors ovor <br> 8 Inchen and under 12 inolies. | Ertort over 12 inohes. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  |  |  | Per cent. | Per cent. | Per cent. | Per cent. |
| Aden : . . . | Auto. | 667 | 67 | 95 | 5 | $\cdots$ | '* |
| Karăcbi . . . . | Auto. | 705 | $9 \cdot 3$ | 84 | 15 | 1 | ... |
| Bhārnegar . . . | T. P. | 365 | 314 | 57 | 33 | 0 | 1 |
| A Apollo Bandar . | Auto. | 705 | 13.9 | 75 | 21 | 4 | . ${ }^{\text {a }}$ |
| Bombay \{ Prince's Dock . | Auto. | 698 | $19 \cdot 9$ | 70 | 25 | 4 | 1 |
| Madras | Aulo. | 705 | 3.5 | 76 | 23 | 1 | ... |
| Kidderpore . . . | Auto. | 706 | $11^{7}$ | 43 | 28 | 16 | 14 |
| Chittagong . . . | T. P. | 361 | $13 \cdot 3$ | 36 | 26 | 20 | 18 |
| Akjab . . . | 'T. P. | 365 | $8 \cdot 3$ | 88 | 12 | ... | - |
| Rangoon | Auto. | 705 | 16.4 | 42 | 29 | 16 | 13 |
| Moulmein | Auto. | 705 | $12 \cdot 7$ | 48 | 24 | 15 | 13 |
| Port Blair | Auto. | 703 | 6.6 | 97 | 3 | . | $\cdots$ |

No. 5.
Table of average crrors in the predicted times and heights of high and low water at the several Tidal Stations for the year 1910.


The foregoing statements for the year 1910 may be thus summarised:- .
Percentage of time predictions within 15 minutes of actuals.


Percentage of height predictions within 8 inches of actuals.

| - |  |  |  |  | $\underset{\substack{\text { High } \\ \text { water. }}}{ }$ | $\begin{aligned} & \text { Low } \\ & \text { water. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Per cent. | Fer cent. |
| $\underset{\text { stations. }}{\text { Open coast }}\left\{\begin{array}{l}  \\ \end{array}\right.$ | hic | ict | re te | S. R. tide gauge | 98 | 98 |
|  | " | " |  | tide pole | 00 | 95 |
| $\underset{\text { Rtations. }}{\underset{\text { Riverain }}{ }}\left\{\begin{array}{l} 3 \\ \text { l } \end{array}\right.$ | " | " | " | S. R. tide grage | 63 | 71 |
|  | " | " | " | tide pole | 59 | 62 |

Percentage of height predictions within one-teath of mean range at springs.

|  |  |  |  |  | $\begin{aligned} & \text { Hi,fl } \\ & \text { water. } \end{aligned}$ | $\begin{gathered} \text { Low } \\ \text { water. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Per cent. | Per ceut. |
| $\begin{gathered} \text { Open coast } \\ \text { stations. } \end{gathered}$ | , | lic | re | S. R. tide gauge | 95 | 96 |
|  | " | " | " | tide pole . | 100 | 100 |
| $\begin{gathered} \text { Riverain } \\ \text { stations. } \end{gathered}\{$ | " | " | " | S. R. tide gange | 89 | 94 |
|  | " |  |  | tide pole | 91 | 45 |

The predictions for the riverain stations for the year 1910 were compared with those for the previous year, with following results :-

The predictions for high and low water times for 1910 are worse for Moulmein and Chittagong and about the same for Kidderpore and Rangoon; for high and low water heights the predictions for 1910 are worse for Kidderpore and about the same for the other three stations. The greatest difference between the actual and predicted heights of low water for 1910 at the riverain stations was as follows:-


## PART V.-LEVELLING. .

## LEVELLING OF PRECISION.

By Colonel S. G. Bualamd, C.S.I., R.E., F.R.S.
The three volumes, numberod XIX, XIXA, and XIXB respectively, which contain the complete account of the levelling of precision executed from 1858 down to the end of the survey year 1908-09, have now been published.

Volume XIX contains a history of the work, a description of the methods and a discussion of the results, while the descriptions and heights of the benchmarks are contained in Volumes XIXA and B, the former dealing with the southern parts of India and the latter with the northern parts.

The most northerly lines included in Volume XIXA are those that join Bombay to Sironj viâ Nändgaon, and Nändgaon to False Point viá Raipur, Bilāspur, and Cuttack.

The heights contained in these volumes are those obtained after the final simultaneous adjustment of all the lines of levels to the mean level of the sea at nine selected tidal observatories. These values supersede those contained in the various levelling pamphlets that have been issued from time to time. All levelling pampllets, published prior to 1911 are now obsolete, and data should not be taken from them.

In Volumes XIXA and B, each bench-mark is given two numbers, a geodetic number which refers to its position on the line to which it belongs, and a topographical number which refers it to the degree sheet in which it lies. Within the limits of each degree sheet the bench-marks are numbered consecutively, so that its serial number, with the distinguishing number and letter of the degree sheet, completely defines a bench-mark. These reference numbers are written thus, $\frac{n .45 .25}{45 \mathrm{C}}$, that is to say, the 25 th bench-mark in degree sheet C of millionth sheet 40 .

In Volumes XIXA and XIXB, two values of the height of each benchmark are given, namely, the dynamic height and the orthometric height. The difference between them and the meaning of both are explained on pages 99-108 of Volume XIX.

The orthometric height is that which should be used by engineers, and should therefore be given on maps.

The number of bencl-marks enumerated in the volumes is very large, but it is to be feared that many are no longer in existence, or are now untraceable, owing to the objects with reference to which their positions were described having been altered or removed.

Officers should inform the Superintendent, Trigonometrical Surveys, of the condition of all the important bench-marks which they come across.

The primary bench-marks should always be reported upon, namely, Rock. cut, Engraved, Interred, Standard, aud Principal stations of triangulation (vide Volume XIX, pages 65-66). Other less important marks need not be reported upon unless they are found to have been damaged, or caunot be found at all, or if there is reason to suspect that they have suffered a change in altitude.

Tidal officers should report to the Superintendent, Trigonometrical Survers, whether the bench-marls at ports require renovation.

The lines of levelling that are now being run are partly to cover new ground, such as Assam and Burma, and partly to provide additional points within the large areas which are not crossed by any of the old lines.

The new lines of levelling will be so designed that they may, when complete, form an independent level net, connected to sea level at a greater number of points than the old one, and capable of an independent simultaneous adjustment. In the meantime, and until such time as they are complete, the new lines will, whenever possible, start from and close on benchmarks of the old net, and all published heights will be in the same terms as those contained in Volumes XIX A and B.

> No. 17 PaRTY.
> (Vide Index Map lu).

## By Lieftenant-Colonel G. P. Lenox-Conyngeay, R.e.

During the year another binocular level, viz., No. 6728 by Messrs. Bausch,

Pebsonnel.
Inperial Officers.
Major J. M. Burn, R.E., in cbarge from 1st to 18th October 1910.
Mr. J. Eccles, in charge from 19th October to 13 th Novenber 1910.
Lientenant-Colonel P. J. Gordon,II.A., in charge from lith November 1910 to $13 t h$ Maroh 1911.
Lieutenant-Colonel G. P. Lenos-Conyngham, R.E., in charge from 14th March to 30 th September 1911.
(The personnel of the detachments and the details of the work dome are given in the separate reports.)

Lomb and Saegmuller, was received.
The party now possesses 9 of these instruments. They all are very similar in appearance, but they are not all equally satisfactory. The object glasses of two, namely Nos. 2625 and 6728, are very indifferent; they have such large spherical aberration that it is impossible to find any state of focus in which parallax is wholly eliminated. Most of the instruments also have a serious
defect in that the eye end cannot be racked out far enough to allow of objects nearer than about 40 feet being focussed. On steep slopes it is frequently necessary to take shorter shots than this, and consequently it has been necessary to equip each detachment with another instrument of different make for use on steep ground.

Level No. 3 by Messrs. T. Cooke and Sons is much superior to the others in both the above respects.

The question of the behaviour of the levelling staves under changes of the atmospheric conditions has been closely watched, but no satisfactory result has been obtained. The stares undoubtedly expand when the air becomes moist, but the action is slow and it is impossible to find any relation between the moisture at any instant and the length of the staff. It would be a great advantage if a staff could be constructed which would be free from the effects of moisture. Experiments on aluminium and steel have been instituted, and it is hoped that something satisfactory may be devised. In the meantime the comparisons with the standard steel bars are being made as far as possible .during the course of the field work, and not only after returning to camp, so as to obtain as near an approximation as possible to the actual length during the levelling.
$\Lambda$ noteworthy point of the work of the past year is that the hills to the west of the Indus are now connected to the level net, so that means now exist of adecting any change in the relative heights of the Himalayas and an olfshoot of the Sulaimin Mountains. The connection with the western hills
is as yet meagre, but that of the Himalayas is satisfactory being effected by seven lines of levels, namely :-

1. Siliguri to Tindhāria.
2. Bareilly to Naini 'làl.
3. Hardwãr to Lansdowne.
4. Saharranpur to Mussoorie.
b. Ambāla to Solon.
5. Lahore to Dharmkot.
6. Rāwalpindi to Murree.

It is desirable that the levelling should be extended fro:n Jacobābād into the Baluchistān Hills when an opportunity occurs.

The following Standard Bench-marks were connected during the year:-
Abmednagar.
Dhubri.
Gauhàti.
Dibrugarl.

## No. 1 Levelling Detachment.

The following programme of work was allotted to the detachment : 一
$\begin{array}{ll}\text { Pensompl. } & \text { (1) Levelling to connect a number of }\end{array}$

Mr. E. H. Corrilon.
Mr. D. H. Lusa.
Mr. T. F. Kitchen.
Lower Subordinate Service.
3 Recorders.
supplementary rock-cut protected bench-marks :-
(a) On the Thal Ghāt on the Kalyān-Nāndgaon line of levels.
(b) At Bombay.
(c) On the Bor-(X)
(2) Levelling from Poona to Alimednagar along the road viá Sirūr.
(3) Levelling from Marmagao along the railway line viá Londa Junction to Belgaum.
(4) Revisionary levelling from Belgaum to Hubli by road viá Dhārwār.
(5) Levelling from Belgaum to Bāgalkot by road via Kalālgi.

Table I shows the discrepancies between the old and the new values of the heights of those bench-marks which are common to the lines of this season and to previous operations. Discrepancies which call for remark are to be found in the neighbourhood of Igatpuri and at Marmagao. At the latter place there is a set of four bench-marks which seem to have sunk by amounts varying from 0.8 of an inch to 2.2 inches. The agreement betweon the old and new values of the remaining twelve bench-marks between Marmagao and Margao is so good that it may be concluded with consideruble confidence that these four bench-marks have proved untrustworthy.

On the Igatpuri-Kasata line the case is difforent. Here we have five bonoh-marks near Kāsinia which agree well and give us confilenoe that no movement has taken placo sinco the levelling of 1877 .78. Tho uest four benoh-marks are not altogether trustworthy as their idontity is onen to some
question ; the remaining three are satisfactorily identified ; they are respectively 813,927 and 970 feet above Kāsāra and show discrepancies of $0 \cdot 161,0 \cdot 186$, 0.225 feet. The fairly good agreement of these three quantities inter se, and the progressive increase in the differences, do not point to accidental movements of the bench-marks; the evidence is rather that the marks have retained their positions, but that there is a systematic difference between the old and the new levelling. The appearance of the discrepancies leads one to suspect an error in staff length, and if this be accepted as the cause, preference must be given to the modern work, as much greater attention is now given to the comparisons of the staves with the standard than formerly. Furthermore, since the error of the height of any point, due to this cause, will be directly proportional to the elevation above sea-level, the error at Käsāra will be less than that at Igatpuri, and the heights of the new rock-cut bench-marks have therefore been deduced from the old value of that of Kāsära, though the line was actually run from Igatpuri.

Line Marmagao to Belgaum.-The line Marmagao to Belgaum closes a levelled circuit, viz., Marmagao, Belgaum, Hubli, Kārwār, Marmagao; all the parts of which, excejt the line Kārwār-Marmagao (1886-87), have been connected or revised recently. Ihe length of the circuit is 322 miles, and the closing error, using the observed differences of level throughout, is 0.308 of a foot, as shown below :

| Lines | $\begin{gathered} \text { Distance } \\ \text { in } \\ \text { in } \\ \text { wiles. } \end{gathered}$ | Observed differcnce of elevation in feet. | Date. |
| :---: | :---: | :---: | :---: |
| $\left.\begin{array}{ccc} \text { From G. T.S. } & \text { At Tidal observatory } \\ \text { O. } & \text { Marmagao to G. T.S. S. } \\ \text { B. M. } & \text { O } \\ & & \text { B. M. } \\ & \text { at Railway } & \text { Station } \end{array}\right\}$ | 102•1 | + 2439.024 | 1910-11 |
| $\left.\begin{array}{rrr}\text { From G. T. S. } & \text { At Railway } & \text { Station } \\ \text { O. M. } & \text { Belgaum to G.T.S. } \\ & & \text { B. M. }\end{array}\right\}$ | $60 \cdot 3$ | - 394.72\% | 1910-11 |
| $\left.\begin{array}{rrr}\text { From G. T. S. } & \text { At Hubli to G. T. S. } \\ \text { B. M. } & & \text { B. } \\ \text { B. } & & \text { at Kārwār. }\end{array}\right\}$ | 102.7 | - 2044889 | 1907-08 |
| $\left.\begin{array}{cc} \text { From G. T. S. } & \text { At Kãrwār to G. T. S. } \\ \text { B. M. } & \text { O. M. } \\ & \begin{array}{c} \text { at Tidal Observatory } \\ \text { Marmaraio. } \end{array} \end{array}\right\}$ | $56 \cdot 7$ | + $4 \cdot 293$ | 1896-87 |
| ${ }^{\prime}$ | 321.8 | - 0.308 | $\ldots$ |

Until however the dynamic or the orthometric heights of the stations have been deduced, no conclusion can be drawn from this apparent closing error, for an crrorless circuit of observed differences of level will not in general close.

The orthometric heights of the Marmagao and Belgaum bench-marks, given in G. 'I', Volume XIXA, differ by 2507 . 665 feet ; applying an approxi-
mately computed correction to the difference of level betwcen these benchmarks as now observed, we obtain 2507.190 as the difference between their orthometric heights, showing a discrepancy of -0.375 between the old and the new values. The length of the new line Marmagao-Belgaum is 102 miles, so that, if the old values which are the result of the simultaneous reduction are considered crrorless, an error of 0.0037 per mile has been generated in this new work.

Revision of line Belyaum to Hubli.-The result of the revisionary levelling from Belgaum to Hubli is also given in Table I. It was decided to have this portion of the line revised, as the revisionary levelling of the line Kärwär to Hubli had shown a big discrepancy, viz., $0 \cdot 68$ of a foot, between the old and new values of two bench-marks, one at Hubli and one 40 miles therefrom (vide page 335, G. T., Vol. XIX). The present levelling shows satisfactory accordance with the 1878 work, and proves that the embedded bench-mark at Hubli has not been disturbed since its original connection in that year.

The revision of the line Belgaum-Hubli also assists in settling the controversy which arose between the levelling officers and the Computing Office about the connection between the levelling of 1873-74 and that of 1907-08 (vide para. 12, page 335, G. T., Vol. XIX.)

The present levelling shows that the arrow B. M. * at Hubli is 2.390 feet above the embedded bench-mark $\dagger$ fixed in 1878 ; in that year this difference was found to be $2 \cdot 365$, but the stone on which the arrow is cut is neither smooth nor level, and the exact spot on which the staff should be held is not defined, so this agreement is as good as could be expected.

Referring to the records of $1873-74$ we find that the arrow B. M. was $2061 \cdot 18$ feet above mean sea-level. The operations of 1878-79 made this height $2062 \cdot 34$, and the present levelling gives $2062 \cdot 53$. These values are all unadjusted observed values, not orthometric heights. The evidence is now conclusive that the arrow B. M. suffered displacement between 1873 and 1878, and that there is no link between the work of 1873-74 and that of 1907-08.

## No. 2. Levelling Detachment.

This detachment had for its programme -

## Pensonnel. Provincial Officers.

Mr. O. N. Pushong.
Mr. D. H. Luxa, until lst Mnrch 1911.
Clper Subordinate Service.
Mr. K. K. Das.
Lower Subordinate Strvice. 3 Recorders.
(1) To level from Gauhāti to Dibrugarh.
(2) To connect the standard bench-marks at Dhubri, Gauhāti and Dibrugarh.
(3) To commence a line of levels from Gauhati to Clittagong.

This season 2 bench-marks of the embedded type which were laid down were moulded of stone cement concrete. The lettering on these bench-marks; in order to make them conform to the usual design, was done by the detachment, and the material appeared unusually soft under the chisel. It remains to be scen whether bench-marks so composed are as durable as those made of stone.

[^1]No. 3. Levblife Detachmbnt.

The following programme of work was allotted to the detachment:-

Personnel. Provincial Officers.
Mr. A. M. Tnlati.
Mr. O. D. Jackeon.
Lorer Subordinate Service. 3 Recorders.
(i) Levelling from $\Lambda$ mbāla, along the Delhi-Ambāla-Kilka Railway, to Kālka and thence along the Simla road to Solon.
(ii) Levelling from Dera Ismail Khān along the Bannu road to Chunda, at foot of the Marut range.
(iii) Levelling from Daryà Khān to Rāwalpindi along the Kacha road viâ Jandanwāla, Khushāb, Kathwai, Jaba and Talagang, with a branch line from Khushāb to Shähpur, crossing the Jhelum.
(iv) Levelling from Nowshera to Rishalpur Cantonment along the Marḍān road.
(v) Levelling from Rāwalpindi to Murree along the Kashmir road.

The seven proposed lines of precise levelling to connect the Himãlayan range with the main lines of levels have all been completed, now that the connections of Ambāla to Solon and Rāwalpindi to Murree have been made. The line from Dera Ismail Khān to Chunda connects the rocky range west of the Indus to the main lines of levels, as well as to the Himallayan range direct, viâ Daryā Khān and Rāvalpindi.

The line Daryā Khān to Rāwalpindi viá Khushāb breaks up the large circuit Murghai-Chach-Lahore-Ferozepore-Murghai (parts of which were worked as early as in 1859) into two parts, namely, Daryà Khān ChaclıRāwalpindi Daryā Khān and Daryā Khān Rāwalpindi Lahore FerozeporeMurghai Daryā Khān ; the second of these will be further broken up into three smaller circuits next field season.

Closing error.-The height of Rīwalpindi above Daryā Khān deduced from the corrected orthometric heights given in G. T., Volume XLXB, is +1101.582 feet; the observed value of this height given by the new line of levelling is +1101.817 feet; this reduced to orthometric terms is approximately 1101.772 . Thus showing a discrepancy of 0.190 foot in 212 miles. As the heights of all bench-marks connected up to 1909 have been adjusted and published in Volumes XIXA and XIXB, this discrepancy will, for the present, be dispersed between Daryā Khān and Rāwalpindi.

Table I shows the discrepancies between the old and new heights of the bench-marks of the original levelling which were connected this season. The check-levelling at Ambāla shows a certain peculiarity ; all the bench-marks at the railway station and at the Royal Horse Artillery lines agree well together, but show a discrepancy with the standard, while the latter agrees well with the two bench-marks at the Church. This will be investigated by a re-check levelling of all these bench-marks, when an opportunity occurs.

TABLE I. - No. 1 Detachirant.
Discrepancics between the old and new values of bench-marks.


Check levelling betiveen Igatpuri-Räsära, part of main line 33 (Kalyān to Nandgaon), 1877-78.
G. T. S. At Kīsāra Ry. Station
B. M.
G. T. S. At Dharamsala, Kāsāra B. MT
G. T. S. At briclge No. 275, it mile O 75, Bombay-Nāsik Road. B. M.
G. T. S. At drain No. 278 near furB. M. long atone No. ${ }_{-2}^{75}$ Bombay
G. T. S. At bridge No. 290,1 furlong 0 south of mile plate No. 76, B. M. Bombay-Nūsitr Rodd.
G. T. S. At parapet wall 2 chs. south O of wile 79 Hombay.
B. M.
G.T.S. At drain No. 318 near furB. M. long post $\frac{79}{4}$, Bombay.
G. T.S. At Toll House, mile $\frac{79}{6}$ 11. M.

0 At drain No. 184
B. M
B. O. M. At drain No. 27,37 ohs. west of mile 83; Bbmbsy.
O. M.
At bridge No. 30
G. T. S. At Igatpuri Railway Station 1. M,


Check levelling between Karjat-Palasdhari, part of main line 31 (Kalyān to Kídgaon), 1906.07.
G. T. S. At Karjat Ry. Station
B. ${ }^{\text {D }}$.
G. T. S. At bridge near Telegraph
B. M. pust No. $\frac{G l}{d}$.
G. T. S. At Palabdhari Ry. Station.
B. $\mathbf{M}$.

| 0.0 | 0.000 |
| :---: | :---: |
| 0.0 | -9.247 |
| 1.7 | +95.040 |

0.000
$-9 \cdot 219$
+35.056
0.000
+0.028
+17.010

Check-lovelling at Fhopoli, part of main line 31 (Kalyän to Kcdgaon), 1906-0\%.
G T. S. At Khopoli Ry. Station $\underset{\mathrm{B}, \mathrm{M} \text {. }}{\stackrel{-1}{ }}$
0.010 .000
0.000
0.000

Table I-No. 1 Drtachaevt-conlinued.
Discrepancies be'ween the old and new ralues of bench-marks-coutd.

| Desaription of bench-marks of the original levelling that were oonnected for cheok-levelling. | Distance from starting bench mark. | Obshrved height above ( + ) or below ( - ) btart. ing bench-mabk ab DETEEMINED BY |  | $\begin{gathered} \text { Difference } \\ \text { (Cheok-Origi- } \\ \text { nal, Thie } \\ \text { eigu t } \\ \text { denotes that } \\ \text { the hoiglit was } \\ \text { greater anl } \\ \text { the aign - less } \\ \text { in 1910-11, } \\ \text { than when } \\ \text { originally } \\ \text { levelled. } \end{gathered}$ | Remabis. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Original lovelling. | Check levelling, 1910.11. |  |  |
|  | Miles. | Feet. | Feet. | Fert |  |
| G. T. S. At Goode platform, Khopoli 0 Ry. Station. <br> B. M. | $0 \cdot 1$ | +3.073 | +3.069 | -0.00.4 |  |
| G. T. S. At bridge, 17 chs. north of 0 Khopoli Ry. Station. <br> B. M. | $0 \cdot 3$ | -2.106 | $-2.113$ | $-0.007$ |  |

Check-levelling between Khandāla-Lonavla, part of main line 31 (Kalyān to Kedgavn), 1906-07.

| G. T. S. At Parsi Dheramsala Khan0 dēla. <br> B. M. | $0 \cdot 0$ | 0.000 | $0 \cdot 000$ | 0.000 |
| :---: | :---: | :---: | :---: | :---: |
| G. T. S. At Khandàla Ry. Station - $\square$ <br> B. M. | 0.6 | +17.494 | +17.472 | -0.022 |

Check-levelling between Poona and Kirkee, part of main line 31 (Kalyān to Kedgaon), 1906-07.

| G. T. S. Standard Bench-mark at Assistant - Commanding Royal Engineer's office, Ponna. | 0.0 | 0.000 | 0.000 | 0.000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| G.T.S. At reservoir of old water 0 works tower near Arsenal, B. M. Poona. | $0 \cdot 1$ | +14:997 | +14990 | -0.007 |  |
| G. T. S. Stenderd Bench-mark at All Saints' Charch, Kirkee. | $5 \cdot 0$ | $-18.518$ | -12.510 | +0.008 | - |
| Check-levelling at Marmagao | $\text { o } \underset{1886 .}{ }$ | $h \text { line } 17 A$ | $\bar{i} r w a ̄ r \cdot M$ | $z g \pi o),$ |  |
| G. T. S. At Marmagno Tidal Obser0 vatory. B.M. | 0.0 | 0.000 | 0.000 | 0.000 |  |
| G. T. S. Ditto ditto B. M. | $0 \cdot 1$ | $-3.637$ | $-3.719$ | -0.182 |  |
| G. T. S. At platform coping opposite 0 Booking Office, Vnico-da. B. M. Guma Railway Station. | 1.5 | $+0.810$ | $+0.715$ | -0.095 | Probably sunk. |
| G. T. B. At masonry plinth, VascoB. O. M. da-Gama Railway Station. | $1 \cdot 4$ | $+0.045$ | -0.023 | -0.068 |  |
| G. T. S. At railpay bridge, $\frac{1}{2}$ mile <br> B. O. M. eqat of Vasco-dn-Gama Rajlway Station. | $1 \cdot 9$ | +5789 | + $5 \cdot 689$ | -0.080 | J |
| (1. T. S. At bridge No. 4, 1-9 milen 0 east of Vasco-da-Game B. M. Railvay Staliod. | $3 \cdot 3$ | +79.870 | +78.883 | $+0.013$ |  |
| G. T. B. At irain 12 chs. eant of mile <br> B. O. M. 7 Marmagao.' | 6.4 | +38•822 | $+38 \cdot 816$ | $-0.000$ | Seems to to identical with B, M, 35 of brufuch line |
|  | $8 \cdot 5$ | $+16.745$ | +16.735 | $-0.010$ | 17-A. |

TABLE I.-No. 1 Detiohment-continucd.
Discrepancies between the old and new values of bench-marks-contd.

| Desorlption of benoh-marks of the original levelling that were conneoted for oheck-levelling. | Distance from starting benohmark. | OBAERVED ERIGHT ADOFA ( + ) OR BELOT (一) 日TAETINO DENCH-MABEAB DETERMINED BY |  | Diferenoe (CheokOriginal). The sign + denotes that the beight was greater and the sign less in 1910-11 than when originally levelled. | RIMARET. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Original levelling. | Cheoklevelling, 1910-11. |  |  |
|  | Miles. | Feet. | Feet. | Feet. |  |
| G. T. S. At bridge near telegraph <br> B. O. M. post No. $\frac{1}{1}$. | 10.7 | +22.103 | +22.101 | - 0.002 |  |
| G.T.S. At bridge near telegraph <br> B. O. M. post No. $\frac{12}{0} \dagger$ | 116 | $+18347$ | +18.339 | -0.008 | $\dagger$ Scems to be identical with No. 31 of branch line 17-A. |
| G. T. S. At bridge between telegraph 0 posts Nos. $1 \frac{18}{8}$ and $\dot{4}_{5}^{6}$. <br> B. M. | $15 \cdot 1$ | $-0.700$ | -0.725 | $-0.025$ |  |
| G. T. S. At Margao Railway station <br> B. M. | 16.1 | +11.056 | +11.937 | -0.019 |  |
| G. T. S. At Navelim <br> B. $M$. | $17 \times 1$ | $+9.638$ | $+9608$ | -0.024 |  |
| $\qquad$ | 167 | $+54 \cdot 368$ | +64.367 | -0.001 |  |
| G. T. S. On platform coping opO posito booking office, B. M. $\quad \underset{\substack{\text { Margao } \\ \text { tion. }}}{\substack{\text { Rnilway } \\ \text { Sta- } \\ \hline}}$ | 16.2 | +11.500 | +11.484 | -0.018 |  |
| G. T. S. At plinth of iron oolumn, O B. M. Margao Railway tion. | 16.3 | +10.511 | $+10.500$ | $-0.011$ | . |
| Check-levelling at Delgaum main line 29 (Nira to Hrebli), connection of standard bench-mark, 1908-09. |  |  |  |  |  |
| G. T. S. At Belgaum Railway Sta0 tion. <br> B. M. | 0.0 | 0.000 | $0 \cdot 000$ | $0 \cdot 000$ |  |
| G. T. S. Standard Bolgum. Bench-marh, | 0.7 | +68.212 | +68.215 | $+0.003$ |  |
| G. T. S. At Post Office, Belgaum 0 <br> B. M. | 0.3 | -5.117 | -5.119 | $-0.002$ |  |
| B. $\operatorname{G}$ M. At Bhimuno Pacel's House in Bazar, Nelgaum | 0.6 | -5.071 | -5.085 | -0.014 |  |
| G.T.S. At drain at junction of 0 Fort and Station road <br> B. M. with Dhārwīr-Belgaum Ruad. | $1 \cdot 0$ | -8.485 | - 8.488 | -0.003 |  |
| G.T.S. At drain at junction of 0 Fort and Station roal <br> B. M. with that to Race-course. | 1.2 | $-1713$ | $-1.715$ | -0.002 | - |
| G. T. S. At Belguum. B. M. | 1.6 | +18.341 | +18.382 | $+0.042$ |  |
|  |  | , |  |  |  |

TABLE I.-No. 1 Detachment-concluded.
Discrepancies between the old and new values of bench-marks-conold.

| Desoription of benoh-marks of the original levelling that were conneoted daring the revisionary operationa. | $\begin{gathered} \text { Nom- } \\ \text { bor } \\ \text { in } \\ \text { (ol. } \\ \text { XIX. } \\ \text { A. } \end{gathered}$ | $\begin{aligned} & \text { Dis- } \\ & \text { tance } \\ & \text { from } \\ & \text { start- } \\ & \text { iug } \\ & \text { point. } \end{aligned}$ | Obebrved height above $(+)$ or below ( - ) bTARTing point as deteeMINED IN |  |  | Rbmarta. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1877-78-79. | 1910-11. |  |  |
|  | Miles. Feet. Feet. <br> Revision line No. 29-Belgaum-Hubli. |  |  |  | Feet. |  |
|  |  |  |  |  |  |  |
| G. T. S. At Belganm . <br> B. M. | 212 | $0 \cdot 0$ | 0.000 | 0.000 | 0.000 |  |
| G. T. S. At bridge 251 near F. S. $\begin{array}{ll} \text { B. M. } \quad \frac{225}{7} \end{array}$ | 215 | 12.2 | -263.361 | -263:388 | -0.027 |  |
| G. T. S. At Bāgevādi . B. M. | 216 | $12 \cdot 2$ | -272010 | $-272045$ | -0.035 |  |
| G. T.S. At Mugat-Khān Hubli B. M. | 217 | 17.0 | -309.088 | -309.157 | -0.069 |  |
| B. O. M. At bridge 272 between $\text { F. S. Nos. } \frac{231}{3 \operatorname{and} 4 .}$ | 218 | 17.8 | -367.231 | $-367 \cdot 317$ | -0.086 |  |
| B. O. M. At bridge 273, 4 che. north of milc 18, Bolgaum. | 219 | $18 \cdot 3$ | -388.250 | --388.698 | -0.318* | * Prolably dis. turbed. |
| G. T. S. At Halikati <br> B. M. | 221 | 23.5 | -214.483 | --214*594 | -0.111 |  |
| Culvert No. 3 C6 near mile 25, Belgaum. | 22.2 | 25.4 | $-134.757$ | $-13: 6777$ | -0.020 |  |
| Culvert No. 323 between F. S. $\text { Nos. } \frac{241}{2 \operatorname{and} 3} .$ | 223 | $27 \cdot 9$ | - 92.006 | -920012 | -0.006 |  |
| G. T. S. At Kittur <br> B. <br> B. M. | 224 | $28 \cdot 2$ | - 61.438 | $-61.638$ | $-0200 \dagger$ | $\dagger$ Probably sunk. |
| $\begin{aligned} & \text { G. T.S. At Tegur , , } \\ & \text { B. } \end{aligned}$ | 226 | 34.0 | - 86.065 | - 86.128 | -0.063 |  |
| Culvert No. 33, $1 \frac{1}{2}$ chs. north-west of <br> F. S. $\frac{253}{1 .}$ | 228 | 397 | -201.565 | -201.581 | $-0.018$ |  |
| G. T. S. At Mumigata . <br> 13. <br> 13. M. | 229 | 41.0 | $-171507$ | -171:519 | -0.012 |  |
| G. T. S. Dhārwâr <br> B. M . | 231 | $47 \cdot 1$ | - 88.186 | - 88.127 | +0.069 |  |
| G. T. S. Rayapur <br> B. M. | 232 | 53.6 | $-170 \cdot 663$ | -170.93日 | +0.024 |  |
| $\widehat{0}_{0}$ At Itubli Travellera' Dun- | $\underline{a}$ | $60^{\circ} 0$ | $-410 \cdot 699$ | $-410.714$ | $-0.015$ |  |
| B. M. galow. <br> ,a. T. S. At Hubli <br> ${ }_{B} \mathrm{M}$. | 235 | 00.0 | -413.064 | -413.104 | $-0.0 .40$ |  |

The larger difference between the levellers on the Belgaum-Bāgalkot line is attributable to the unfavourable atmosphere conditions which prevailed when this line was run. The weather was hot and the readings of the staves were at times rendered uncertain by the boiling of the air, even though the lengelds of the shots were reduced.

Discrepancies between the old and new values of bench-marks.


TABLE I.-No. 3 Detachient.
Discrepancies between the old and new values of bench-marks.

| Desoription of bench-marks of the original levelling that were conneoted for check-lovelling. | $\begin{gathered} \text { Dis- } \\ \text { tance } \\ \text { from } \\ \text { start- } \\ \text { ing } \\ \text { bengh- } \\ \text { mark. } \end{gathered}$ | Dbgerved heiget above (+) OR BRLOW (-) BTABTfNG EENCH-MABE AB DETERMINED BY |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Original levelling. | Chock-levelling, 1910-11. |  |


| Standard Bench-mark at St. Paul's Church. | 0.0 | 0.000 | 0.000 | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: |
| + at Memorial St. Paul's Church . | $0 \cdot 1$ | -1.326 | $-1.312$ | +0.014 |
| 901.6 1 at St. Paul's Church | $0 \cdot 1$ | -1.829 | -1.827 | $+0.002$ |
| G. T. S. At N. W. end of B. platform 0 of Ambāla Centonment B. M. Railivay Station. | 13 | $-4.496$ | -4.447 | $+0.049$ |
| $\begin{aligned} & \text { G. T. S. At A. platform of } \\ & \text { O Ambila } \\ & \text { B. M. } \\ & \text { Cantonment } \\ & \text { Station. } \end{aligned}$ | 1.6 | -5.361 | $-5 \cdot 325$ | $+0.038$ |
| G. T. S. At Wealejan Church . 0 <br> B. M. | 0.9 | +1.875 | +1.913 | +0.038 |
| G. T. S. At block No. 3, Section 0 Hospital. <br> B. M. | $1 \cdot 1$ | $+3 \cdot 140$ | +3.182 | $+0.042$ |
| G. T. S. At block No. 2, Section 0 Hospital. <br> B. M. | $1 \cdot 1$ | +2.274 | +2312 | +0.038 |
| G. T. S. At block 42, Royal Horse 0 Artillery Lines. <br> B. M. | 1.8 | $+8.261$ | $+8.296$ | +0.035 |
| G. T. S. At block 43, Rojel Horse 0 Artillery Lines. <br> B. M. | 1.9 | $+9.655$ | $+9 \cdot 671$ | $+0.016$ |

Check-levelling at Dera Ismail Khän-Main Line 55 (Murghai to Chach), 1906-07-08

| Standard Bench-mark at Dera Ismail Khēn. | $0 \cdot 0$ | 0.000 | 0.000 | ... |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $592 \cdot 40$ At St. Thomas Church . . $574: 52$ | 0.2 | +0.179 | $+0.203$ | $+0.024$ |  |
| G. T. S. Emberded at St. Thomas $\square$ Charoh. <br> B. M. | $0 \cdot 1$ | $-1.888$ | -1.864 | $+0.024$ |  |
| + At Tomb, St. Thomas Church . | 0.2 | $-0.219$ | -0.206 | +0.013 |  |
| G. T. S. At Brigade Office 0 <br> B. M. | $0 \cdot 4$ | $-1.927$ | $-1.930$ | $-0.003$ |  |
| G. T. S. At A. C. R. E.'s Office <br> 0 <br> ${ }_{\mathrm{n}} \mathrm{B}, \mathrm{M}$. | 0.8 | -2.939 | -2.928 | +0.011 |  |
| G. T. G. At District Loosl Board'e O Ofice. <br> B. M. | 0.9 | $-0.423$ | $-0.436$ | -0.008 |  |
| At milestone No. 1 . | 0.2 | +1.339 | +1395 | $+\mathrm{CO} .05{ }^{\circ}$ | - This bench-mark appears to havo been disturbed and the new value should now be accepted. |

## TABLE I.-No. 3 Detaohment-concld.

Discrepancics betwecn the old and new values of bench-marks-conold.

| Dosuription of bench-marks of the original levelhng that wero conncoted for chick-levelling. | Distanco from etarting benchmark. | Opgerved <br> (+) OK Hi <br> ing ben <br> D日TB | IaHT ABOVE (一) втант--MAREAB NBD HT | Difference (Cheok-Original). The gign + denotes that the height was greater and the signless in 1910-11 than it was when originally levelled. | Remarie. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Original levelling. | Check-levelling, 1910-11, |  |  |
|  | Miles. | Foet. | Feet, | Feet. |  |


| G. T. S. At south end of platform of | 0.0 | (1)000 | $0 \cdot 000$ | - $*$ |
| :---: | :---: | :---: | :---: | :---: |
| O Darye Kbēn Railwby |  |  |  |  |
| G. T. S. At north end of platform of | $0 \cdot 1$ | +0.294 | +0.297 | +0.003 |
| $\begin{array}{cc}\text { O. } \\ \text { B. M, } & \text { Darya } \\ \text { Station. }\end{array}$ |  |  |  |  |

Check-levelling at Rāwalpindi-Main Line 56 (Ferozepore to Chach), 1905-06.
Standard Bench-mark at Rabwalpindi
G. T. S. At Chriet Ohurch
B. M .
G. T. S. At Government Telegraph 0 Office.
B. M.
G. T. S. At Lockhart Memorial B. M.

G T.S. at District Traffio Superin. 0 tendent's Office.
B. M.
G. T. S. Embedded at Rawalpindi

B Railway Station.
G. T. S. At platform of Rāwalpindi B. M. Railway Station.
G. I'. S. At platform opposite north-

O enat oomer of Rāwalpindi
B. M. Railway Station.
G. T. S. $\Delta t$ Leh railway bridge B. M.

| 0.0 0.0 | 0.000 -1.321 | $\begin{array}{r} 0.000 \\ -1.322 \end{array}$ | $\cdots$ -0.001 |
| :---: | :---: | :---: | :---: |
| 0.7 | -17.109 | -17.117 | -0.008 |
| $1 \cdot 1$ | $-24.038$ | -24:027 | $+0.011$ |
| 1.6 | -35-496 | -35.492 | +0.004 |
| 1.6 | - 96.340 | $-36.346$ | -0.006 |
| 1.8 | $-34.241$ | - $\mathbf{3 4} \cdot 237$ | +0,004 |
| 1.8 | -34:227 | -34.220 | $+0.007$ |
| $2 \cdot 9$ | $-48 \cdot 821$ | -48.819 | +0.008 |

Check-levelling at Nowshora Branch Line 56A (Chach to Peshawar), 1906-07.
G. T. S. At bridge No. 275 (B. M. 17) O
B. M.
G. T. S. Embedded nt Nowshern RailW. way Station (B. M. 18).
B. M
G. T.S. At enst end of platform ${ }^{0}$
B. M.
G. T. S. At west end of platform B M .
G. T. S. At bridgo No. 280 (B. M. 21) B.

| 0.0 | 0.000 | 0.000 | $\ldots$ |
| :---: | :---: | :---: | :---: |
| 0.8 | -.29 .315 | -29.314 | +0.001 |
| 0.9 | -26.148 | -26.149 | +0.005 |
| 1.1 | -26.364 | -26.269 | -0.005 |
| 1.8 | -18.393 | -18.323 | +0.010 |
|  |  |  |  |

Table II--No. 1 Detachment.
Results of comparison of staves, season 1910-11.


TABLE II.-No. 2 Detaobment.
Result of comparison of staves, season 1910-1911.

| Place and data of oomparizon. | Lengta of etafy-10 ft.+ Quantity below. |  |  |  | Refarib. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Staf No. 204. | Staff No. 20B. | Staf No. 16A. | Staff No. 16B. |  |
|  | Feet. | Feet. | Fret. | Feet. |  |
| Dhubri, 1st November 1910 | -0.00015 | +0.00011 | -0.00137 | +0.00060 | Clear and cool. |
| Gnulăti, 9th „ 1910 | - 00003 | + ${ }^{00097}$ | - 00010 | + ${ }^{0} 00103$ | " ", dry. |
| Somapur, 19th , 1910 | + 00027 | + 00102 | - 00018 | + 00122 | Light clonde and dry. |
| Nakhola, 1st December 1910. | + ${ }^{\circ} 00138$ | + 00164 | + 00047 | + ${ }^{\circ} 00228$ | $\begin{aligned} & \text { Bcattered } \\ & \text { clouds; cool. } \end{aligned}$ |
| Raha, 9th " 1910. | $+\cdot 00047$ | + 00125 | + 00011 | + 00105 | Scattered clouds. |
| Samaguri, 30th " 1910. | + ${ }^{00040}$ | + $\cdot 00098$ | - 00006 | + 000128 | Clear. |
| Amgari, 2nd January 1911. | + ${ }^{00021}$ | + ${ }^{\prime} 00066$ | - 00026 | + 00111 | Clear and dry. |
| Kajiranga, 12th " 1911. | -. 00026 | + 00079 | -. 00027 | + 00059 | Light seattered olquds. |
| Dergaon, 24th ", 1911 . | + 00057 | + ${ }^{\circ} 00153$ | + 00042 | + ${ }^{00143}$ | Cloudy and coal. |
| Kakojan, 3rd February 1911. | - 00007 | + 00110 | - 00009 | + ${ }^{00123}$ | Light scattered clouds and oool. |
| Sibeägar, 14th " 1911. | + 00038 | + ${ }^{0} 00102$ | + 00021 | + 000108 | Scattered clouds and cool breeze. |
| Lepetkata, 24th , 1911 | + ${ }^{0} 0113$ | + ${ }^{\circ} 00225$ | + ${ }^{\circ} 00101$ | + ${ }^{\circ} 00182$ | Cloudy. |
| Dibrugarh, lst Maroh 1911. | + 00086 | + 00158 | + 00075 | + 000152 | Light seattered olouts. |
| Bornilat, 29rd " 1911 . | - 00010 | + 00062 | - 00045 | + 00056 | Clear cool breeze. |
| Nongpoh, 1st Aptil 1911 | - 00019 | + ${ }^{0} 0019$ | - '00060 | + ${ }^{\circ} 00052$ | Scattered olouds. |
| Umran, 11th " 1911 *. | -. 00027 | + 00032 | -'00057 | -.00007 | " " |
| Shillong, 21at " 1911 | + $\cdot 00116$ | $+{ }^{0} 00140$ | + ${ }^{00137}$ | + 00161 | Cloudy. |
| Dumpep, 6th May 1911 | + 000078 | + 00175 | + 00046 | + 00177 | Scattered cloodu. |

TABLE II.-No. 3 Defachment.
Result of comparison of staves, scuson 1910-11.


TABLE III.-No. 1 Detachment.
Tabular Statement of Out-turn of work, season 1910-11.

-     - 


TABLE III.-No. 2 Detachment.
Tabular Statement of outturn of $2000 k$, season 1910-11.

Nota.-The total rises and falle on arxiliary 1 i nes connecting $G$. T. stations are $\mathbf{3 7 6 3} 936$ fect and $73 \cdot 190$ fcet respectively.
TABLE III.-No. 9 Detacement.


Table IV.-No. 1 Detachigent.
List of Great Trigonometrical Survey stations connected by spirit-levelling. Season 1910-11.

| Name of station. | Height in feet above mean seatevel hy |  | Difference, Trianguhation -Leveling. | Remarig. |
| :---: | :---: | :---: | :---: | :---: |
|  | Spiritlevelling | $\begin{aligned} & \text { Triangala- } \\ & \text { tion. } \end{aligned}$ |  |  |
| Bábulsar H. S., Bombay Longitudinal Series. | 2137.971 | $2140 \cdot 79$ | +2.819 | Height of lower mart-stone. |
| Yalar F. S., Mangalore Meridional Series. | 3285. 456 | 3283 | -2.456 | Height of upper mark-stone. |
| Navalur H. S. Mangalore Meridional Series. | 2448:383 | 2445 | -3.383 | Ditto ditto. |

TABLE IV.-No. 2 Detachment.
List of Great Trigonometrical Survey stations connected by spirit-levelling.
Season 1910-11.

| Name of atation. | Heiget in femt above mean biah-level by |  | Difierence, Triangalation -Lovelling. | Remamie. |
| :---: | :---: | :---: | :---: | :---: |
|  | Spiritlevelling. | Triangalation. |  |  |
| Assam Valley 1st Class Secondary Series. |  |  |  |  |
| Dūmria H. s. | $2410 \cdot 114$ | 2,411 | +0.886 | Mark on rock in situ. |
| Chhintamanigarh T. S. - | 301-127 | 302* | +0.875 | * Ground floor mark-stone. |
| Dibrugarh Charch S. . | $395 \cdot 461$ | 394 | $-1.461$ |  |
| Khanikar poat S. . - | $338 \cdot 279$ | 336 | -2.279 | Uppor mark. |

Note, - Uanally a list of G. T. S. principal stationg is givon. As no prinoipal sories exist along this route, this list of secondery stations is given in the belief that it may be usefal.

Table IV.-No. 3 Detacement.
List of Great Trigonometrical Survey stations connected ly spirit-levelling.
Season 1910-11.

 Levolllig Volames.
'Defferences between Levellers (First-second): -
No. 1 Detachment -
Line Küsàra-Igalpuri.
At 12 th mile (end of line) . . . . . . $0.02 \theta$ feet.
Line Poona-Ahmednagar.


Line Marmagao-Belgaum.


Line Belgaun-Hulli.


Line Belgaum-Bägalkot.
At 50th mile. . . . . . . -0.145 "

The larger difference between the levellers on the Belgaum-Bāgalkot line is attributable to the unfavourable atmospheric conditions which prevailed when the line was run. The weather was hot and the readings of the staves at times were rendered uncertain by the boiling of the air, even though the lengths of the shots were reduced.

No. 2 Detachment-

## Gauhāti-Dibrugarh.



Gauhäti-Dumpep.

No. 3 Detachment-
Line Ambäla-Solon.
$\begin{array}{ccccc}\text { At 50th mile } \\ \text { " } 67 \text { th }\end{array}, \quad . \quad+0.083$,

Line Dera Ismail Ehän-Chunda.
$\Delta t$ 33rd mile (end of line) . : . . . . 00.029 ,

Line Daryā Khān-Rāwalpindi.

| At 50th | mile | . | - | - | . | - | - | - | -0.083 | feet. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , 100th | " | , | - | - | - | - | - | - | -0.054 | " |
| " 150th | " | - | - | - | - | - | - | - | -0.011 | " |
| \% 200th | " |  | - | - | - | - | . | - | -0.128 | " |
| , 212th | , |  | - |  |  | - |  | - | -0.088 |  |

Line Rāwalpindi-Murree.
At 41st mile (end of line) . . . . . . -0.081.

# PART VI.-MAGNETIC SURVEY. 

No. 18 PARTY.
( Fide Index map 11).
by Captain R. H. Thoyas, R.E.

Personnbl.
Imparial Officers.
Captain R. H. Thomas, R.E., in clarge from of the magnetic survey during the year Soth Marrul 1911.
Lieutenant H. T. Morshead, R.E., in charge from lst Octo:er 1910 to 19th March 1911, and altached from 20th March to I5th September 1911.

Prooincial Officers.
Mr. E. C. J. Bond, up to 2lat July 1911.
Mr. H. P. D. Morton.
Mr. R. P. Ray.
Mr. N. R. Majumdar.
Mr. B. B. Mathur.
Lower Subordinate Sorvice.
10 Surveyors, cte.

The present report deals with the work 1910-11.

The report is divided into 3 main heads as follows:-
I.-An account of the operations in the ficld and work in recess quarters.
II.-A note on the working of the observatories during the survey jear 1910-11.
III.-Tables of results comprising preliminary values of the magnetic elements at field and repeat stations in 1910-11 and the "quiet day " results at the survey base stations.
An index chart showing the progress of the magnetic survey is appended.

## I.-FIELD OPERATIONS AND RECESS WORK IN 1910-11.

1. Worl of the field detachments.-The field season commenced on the 20th October 1910 and closed on the 14th April 1911 when the party moved to recess quarters.

Four field detachments were employed during the year under report under Messrs. Bond, Morton, Ray and Mathur.

Mr. Bond was employed in office duties during the cold season, and took
Magnetic eurvey of Kashmir. the field in April in Kashmir. Twentynine new stations were observed, areraging 30 miles apart, the detachment returning to recess quarters early in July.

The Magnetic survey of the Andaman and Nicobar Islands, for which the

> Detail survey in Bongal.
census operations appeared to offer a favourable opportunity, had been included in the programme of Mr. Ray's detachment; at the last moment, however, the promised accommodation in the Census steamer was not forthcoming; and after observations at the repeat station at Port Blair and 3 new stations in the Andamans, the detachenent was employed on detail survey in the vicinity of Buxar and Chäpra.

Mr, B. B. Mathur carried out a detailed surrey of the Bengal coal-field in respouse to numerous requests for aocurate values of magnetic declination; six meridian lines were also laid down to facilitate the testing of surreying compasses.

Mr. Morton was employed in re-observing at a number of old field stations which it is intended to re-occupy as addi-

Observations at, and pelmanent marking of, old field staticns, as udditional "repeat" stations. tional repeat stations, in order to obtain further data for the secular changes in the magnetic elements.

Recent magnetic surveys have shown that these changes are far more complex and dependent on local and regional conditions than had previously been supposed, and it is therefore desirable to supplement the data availahle from the five observatories and 23 repeat stations, which are too far apart for the satisfactory determination of the secular changes over the entire region covered by the survey. The time and labor expended on accurate determination of the magnetic elements at any one time would be wasted, unless these changes are known with sufficient accuracy to obviate the introduction of serious error in the reduction of the observed values to a common epoch. "Repeat" observations at old field stations have been included in the annual programme since 1907 ; the field stations, however, were not permanently marked in the first instance as it was considered that, from the recorded description and observed bearings to prominent objects, the station could always be located within a few feet of the original site. Ordinarily an error of this amount in the siting of the instrument would be negligible, but in highly disturbed localities where the "station error" due to local disturbance varies widely in a small area, it is important to ensure the exact identification of the point previously oocupied; for this reason Mr. Morton's stations have been marked by a concrete pillar, as in the case of the regular repeat stations.
2. Field work of the officer in charge.-During the field season one imperial officer only was available-Lieutenant Morshead, R.E.

The four survey base stations were inspected and comparative observations made at each and at Alībāg.

Twenty-two repeat stations were also visited.
3. Work during recess.-The computation of the previous season's field work and the reduction and tabulation of the base station results for 1910 have been completed.

The selection and computation of the results of a new series of "quiet days" on which the traces are available at all the survey base stations have been completed. Hitherto the classification of

Selection and computation of a new series of "quiet" daye. the H. F. traces at the four survey observatories have been submitted to the Director, Alībāg Observatory, who subsequently selects and intimates the "quiet days" each month; many instances have, however, occurred in which the traces at one or other observatory have not been available for all the magnetic elements for one or more of the selected days and in these cases it has been the practice to substitute another quiet day for that observatory only.

The data derived from 5 quiet days per month are not, however, strictly comparalsle for various observatories unless the same days are uscd at each; uniformity in this respect is also desirable for survey purposes in the determinations of the corrections to field observations for diurnal variation and disturbance.

This new serics of quiet days is not altogether complete; while in most cases it has been feasille to select 5 quict days rach month, occasionally 4 days and in a few instances 3 days only have been obtainable.

- The main object of the introduction of the " quiet" day system was to

> Proposed measurement of "all" daya. effect a substantial saving in the labor required to obtain comparable results from various observatories, where the tabulation of all the curves was considered too serious a burden.

Losses of record are, howerer, at times inevitable and the system is therefore incapable of extension to an indefinite number of participating observatories; in India difficulties have sometimes arisen with only 5 observatories and, though these diffeulties have been mainly due to unavoidable losses of record under circumstances unlikely to recur, the liability to such losses always exists owing to the observers in charge lacking the skill and knowledge required for other than superficial adjustments of the instruments.

The survey observatories were primarily established for the purposes of the magnetic survey; but while this end is amply served by the "quiet day " system and the selection of a series of quiet days applicable only to the survey observatories, the results are necessarily lacking in comparability with those of other observatories and the principle of the quiet day system is to that extent sacrificed.

Comparability can only be obtained by co-operation in an international series of quiet days or by the measurement of all days; of the two alternatives, the latter is to be preferred as being less likely to be affected by loss of records.

It has therefore been decided to introduce the measurement of all days from January 1912 as a tentative measure, at the same time transferring the labour of measuring the curves from the office of the magnetic party to the observers in charge of the base stations. The quiet day results will continue to be separately tabulated so that in course of time data will be available for the comparison of "quiet" and " all day" results.
4. Instrumental differences in H. F.-'The imperial officers of the party have been mainly employed during recess in continuing the investigation of the instrumental differences in $\mathbf{H}$. F., to which reference has been made in the reports of the last two years: this work, it is hoped, will be shortly completed and the following summary of the various steps in the investigation may be of interest.

It has been customary to compare the field instruments with the Dehra standard twice each year, at the beginning and end of each field season; observations with the field instruments are as far as possible simultaneous, site errors being eiiminated by exchange of stations : the comparisons are made through the magnetugraph curves, for the standardisation of which additional observations are made with the standard instrument during the comparisons.

The resulting instrumental changes showed considerable variations; these could only be due to (a) error of observation, (b) changes in instrumental constants, or (c) real changes in the indications of various instruments, which are separately considered below.

A complete determination of $H$. F. requires vibration and dleflection experiments giving mH and $\frac{11}{4}$, from , which "m" and $H$ are found : usually however vibration experiments are made just before and after the deftiction and the mean of the two values adopted as the value of H. F. applicable to the mean epoch of the observations.

The valuc of " $m$ " generally decreases slowly, but not always regularly, owing to the accidental jarring or shocks wliioh a magnet may experience from time
to time, so that for short periods " $m$ " may be regarded as constant ; H on the other hand is constantly undergoing changes, some periodic, others non-periodic, and varies from place to place : the successive values of " $m$ " therefore afford a means of testing the accuracy of the observations.

Errors of observation in the determination of H. F. may therefore be due to two causes, viz., change of H.F. and declination during the time occupied in the determination, and accidental error due to mistake in observation; in both cases the values of " $m$ " and H are affected.

The probable error of a single determination of " $m$ " and $H$ may be con. siderable : but the chances of error are greater in the vibration than in the deflection experiment for two reasons: firstly, the intrinsic difficulty of the former observation and, secondly, on account of the greater length of time occupied in the vibration observation.
(The complete deflection observation occupies considerably longer time than the vibration, but the observations at 22.5 cms . only are used for determining H. F., the remainder serving only for the evaluation of the distribution coefficients $P$ and $Q$; the average time required for the observations at 22.5 cms . is approximately 6 minutes against 10 minutes for the vibration experiment.)

It was therefore thought that errors of observation could as far as possible be eliminated by the recomputation of the values of $\boldsymbol{H}$. F. from the deflection results only, using mean values of " $m$ "; the mean value of " $m$ " was obtained from the smoothed curve drawn through a series of plotted values each of which was the mean of 12 or more successive single values.

This method of computation was in the first instance applied to the base station observations, where the base line observations offered a ready means of testing any resulting improvement over the former method. In practically every case the probable error of the mean base line value was considerably diminished and the general symmetry of the curve of base line values improved. The observations with the field instruments were then recomputed, and the method adopted for future use.

There was a slight corresponding improvement in the instrumental differences, but on the whole the character of the variations remained unchanged.

It had been found, however, that, in drawing the smoothed curves of " m " for different instruments from which the mean values of " $m$ " were scaled, the observed values of " $m$ " did not in all cases decrease with lapse of time, increases of value being occasionally exhibited for short periods and the next step in the investigation was to consider the possibility of eliminating these apparent increases by considering change in instrumental constants.

The constants which contribute appreciably to the observed value of H. F.
(b) Change in Instramental constants. are (1) the temperature coefficient, (2) the moment of inertia, and (3) the distribution coefficients P and Q .
(1) Chree has shown (Proc. Roy. Soc. Vol. 65) that there is no clear relationship lectween the temperature coefficient " $q$ " and " $m$ ", and consequently no reason to suspect a change in " $q$ " as a magnet grows weaker with age. Even if such a tendency existed, the short period which has clapsed since the magnets were magnelised and the comparatively small diminution in their respective magnetic moments, would afford sufficient grounds for neglecting rhanges in " $q$ " as a contributory cause of tho observed instrumental changes.

- (2) No account was taken of changes in the moments of inertia of tho survey magnets in computing the instrumental differences; there is some uncertainty as to the correct initial values of the moment of inertia of the field magnets at the beginning of the survey for the reason given in the report for 1904-05, though the values for the standard instrument are however known from year to year with probably very fair accuracy.

It was therefore considered advisable to wait until the values of the moment of inertia $K$ were available for subsequent years, from which values for the preceding period could probably be deduced.

Observations since 1906, in which year the absolute moments of inertia of the auxiliary standard inertia bars were accurately determined, have shown that the decreases in the value of $K$ since that year are very small for all the survey magnets: the values of $K$ for the standard from 1902 to 1906 would seem to indicate that the rate of decrease is relatively more rapid when a magnet is first taken into use.

It is tolerably certain that the change owing to decrease of K has been greatest in the standard margnet and this, if changes in the moment of inertia were alone responsible for the variations in instrumental differences, should be shown by an increasing divergence of those differences, when those are based on values computed with a constant moment of inertia.

The irregularities of the observed variations in instrumental differences were however such that the correction for progressive change of the moment of inertia could have little effect on these irregularities, and it was therefore decided that correction on this account might more appropriately be deferred to a later stage of the investigation.
(3) Hitherto the values of $m$ in in the deflection experiment had been computed using the value $1 \frac{p}{r^{\prime h}}$ when $P$ was derived from observations at two distances, the value of $P$ used in computation being the mean of the year for base stations and for a season's work for the ficld instruments; very occasionally means were taken out for intermediate periods when there was evidence of apparent change.

Observations were however invariably taken at a third distance, but the correction on account of the $Q$ term was left to the final reduction.

It was previously mentioned that in deriving the curves of " $m$ " for various magnets anomalous increases of " $m$ " of comparatively small amount were sometimes met with which could neither be ignored on account of their magnitude and duration, nor attributed with any certainty to errors of observation; sudden falls of " $m$ " of varying account had also occurred in almost all the magnets.

Displacements of the magnetic axis had been sometimes found to coincide with these latter, and it seemed reasonable to suppose that, if changes in the distribution constants really did occur, they would most probably be associated with these decreases in the value of " m "; apparent increases of " m " might be accounted for on the same hypothesis, and eliminated by changes in $P$ and $Q$, if these could be substantiated.

Preliminary inspection of the values of $P_{1,2}$ and $P_{23}$ (being the values from obscrvations $22 \cdot 5$ and 30 cms. and 30 and 40 cms. respectively) of the survey standard seemed to indicate that several changes in $P$ and $Q$ had oceurred and the term $\left(1+{ }_{i}^{\mathrm{p}}++_{i}^{Q}+\ldots\right)^{-1}$ was then computel for various periods, the srouping of which was determined partly by evidence of change in either $P_{: 3}$
or $P_{2, s}$ and partly by sudden changes in " $m_{0}$ ": the process was subsequently extended to the other observatory and field instruments.

For the observatory instruments, the base line values of the magnetographs and the resulting monthly mean values of H. F. afford a means of testing the reality of the apparent changes found from the magnetometer observations; no assumed change in the coefficients can be accepted which results in a dislocation of the base line which is unconfirmed by visual inspection of the curves, while a sudden change in the mean value from one month to another which is confined to one observatory is at least open to suspicion.

Applying these tests, it was found that, in the observatory instruments there were no grounds for assuming real changes in $P$ and $Q$, except on one occasion in the standard instrument at Delra, viz., from May 9th, 1908, when there was a sudden fall of " $m$ " amounting to 17 C . G. S. units, the new values of $P$ and $Q$ applying to all observations made since that date.

For the field magnets, there are no such facilities for testing the variability of $P$ and $Q$ as in the observatory magnets, but fortunately the values of $P$ and Q computed for various periods, as in the observatory instruments, are, with one exception, in such good agreement that it is certain that no change in these constants can have occurred: in the single case where there was an undoubted change, there was also a sudden fall in " $m$ " of 70 C . G. S. units.

Sudden falls of " $m$ " have not been uncommon in the field magnets, as might be expected from the shocks and jars of travelling; and the fact that even under these conditions $P$ and $Q$ remain unchanged affords additional and stronger evidence that the changes in these constants for the standard magnet cannot be real.

The cause of these apparent changes which generally are so abrupt as to be unmistakeable, is not clear; but they usually coincide with dislocations of the curve of " $m$ " and are of short duration, the values of $P$ and $Q$ then returning to the previous ralues, and it therefore seems possible that they may be due to a temporary alteration of the normal magnetic conditions owing to the proxinity of magnetic material : if this theory is correct it would account for the fact that these apparent changes are usually only met with in the base station observations.

On the whole, then, it may be concluded that real and permanent changes in the distribution constants are rare : real changes need only be looked for when there has been a large and sudden fall in the value of " $m$ ", and even in such cases changes are comparatively infrequent.

This conclusion is important but the variations in instrumental differences still remain unexplained; some slight improvement resulted from the substitution of a constant value of $1-\frac{P}{2 / 1}$ for periodic values (yearly or seasonal) hitherto used, but the $Q$ term was shown to be a constant for any particular magnet.

Changes in the magnetic constants need not then be considered in the investigation, observational errors had apparently been eliminated as far as possihle, and there seemed no alternative but to regard the changes as duc to real instrumental change.

Apart from actual damage to a magnetometer resulting in serious alteration of the assumed deflection distances,
(c) Real intrumental chnngos, it is difficult to imagine how an instrumental change can occur, other than one in the constants: the constants, which affect the value of H.F., are the .temperature coefficient. distribution
coefficients and the moment of inertia; it has been shown that change in the temperature coefficient need not be considered, in the distribution coefficients rarely (and changes in the latter are readily found from the observations themselves), and the moment of inertia is periodically re-determined.

The hypothesis of real instrumental change was therefore entertained with reluctance, the more so that the irregularities in the instrumental changes could only be explained by accepting frequent changes in both the standard and field instruments.

Instrumental changes, permanent ol temporary, were considered to be likely to coincide with abrupt dislocations of the magnetic moment, which might conceivably be regarded as the result of considerable molecular disturhance.

In last year's report several examples of apparent instrumental change, permanent and temporary, were given, which were ooincident with sudden decreases of magnetic moment : the evidence in support of these changes was apparently unimpeachable and if these instrumental changes had really occurred, the frequency of the changes in the instrumental differences might for the most part be plausibly explained, sudden falis of magnetic moment being a not uncommon experience with the field instruments, though it would still be difficult to account for changes when no abnormal decrease of " $m$ " had conveniently occurred.

Further investigation during the past recess season has however shown that the instrumental changes suggested in the last report cannot be substantiated.

It has now been found that the data from which the temporary change in the standard instrument in May 1908 was deduced, were incorrect: the selected mean temperature for the Dehra observatory was increased from $25^{\circ}$ to $27^{\circ}$ from January 1909, and in computing the instrumental differences through the magnetograph curves during the recess season of 1909 , the new mean temperature was inadvertently applied to some of the instrumental comparisons of May 1908. The temperature coefficient is $12.6 \gamma$ per $1^{\circ} \mathrm{C}$ and the error thus introduced amounts to $25 \gamma$ which is precisely the amount of temporary change deduced from the erroneous data : that the standard appeared to have reverted to former conditions in Octoher 1908 is due to the comparisons for that month having been correctly computed.

Examples of permanent instrumental change were also given at Barrackpore and Kodaikānal.

In the latter case, the correct value of " $m$ " for any particular observation is somewhat uncertain owing to rapid changes in the observed values, while there is reason to suppose that the autographic instrument was not working satisfactorily; at Barrackpore the apparent change is due partly to an assumed change of the distribution coefficients which is probably incorrect, and partly to interference in the autographic instrument which was opened up and readjusted during December 1906.

At Barrackpore, moreover, there was a clange of observers during December 1906, and this leads to the consideration of what is most probably the real explanation of the majority of the obsorved changes in instrumental differences, viz., " personal equation" between observers in the determination of H. F., which in this instance was masked by the large fall of magnetic moment which occurred at the same time as the obscrivers, wore changed.

Personal equation was alluded to in last year's report but the significance
Personal equation and pergonal error. of this factor in the measurement of Horizontal Force was underestimated for want of data from which the cause of personal equation could be deduced: further it was thought that personal equation would be a constant for any one observer for considerable periods and corrections therefore easily applied.

Personal equation may be defined in this connection as the difference of the mean values of the magnetic moment for the same magnet obtained by different observers, the mean epoch of the observations being approximately the same in each case.

Each observer may have a personal or absolute error: thus the apparent absence of personal equation on interchanging observers may mean either that at that particular time their absolute errors were nil or of the same amount.

Experiments have since shown that personal equations are largely and probably wholly attributable to errors of observation in the vibration experiment.

Personal error in the determination of H. F. may be further defined as the difference in the mean magnetic moment obtained by the same observer when the vibration observations are taken
(a) by the eye and ear method;
(b) by the electric chronograph.

Experiments, in which observers were interchanged, have shown that while for the majority of observers results are practically identical when using the chronograph, serious divergencies, as in the case of observations of star transits, are found in the former method; further "personal error" is by no means necessarily a constant for a particular observer (though it may be so for short periods), but may vary during the limits of a single field season.

The cause of the error appears to lie in the estimation of the time interval elapsing between the clock beat and the transit of the centre of the scale by the moving cross wires, the magnitude of the error varying with the amplitude of the arc of vibration, which diminishes by about one half during the observation. In this respect the observation differs from that of star transits.

The magnitude of the effect of a timing error may be shown by the following example: with a magnet having a moment of 900 O . G. S. units and a moment of inertia of 3.4 (which are the average values of the survey magnets), a difference of 0.2 seconds in the mean value of the several series of 162 vibrations will produce at Dehra Dūn an error of 0.4 unit in magnetic moment and an error of $14 \gamma$ in $H$. F., i.e., such small errors as $0 \cdot 1$ second in opposite directions in the two series of vibrations would be sufficient to account for the discrepancy.

Attention was first drawn to personal error, as a factor to be considered in the determination of E. F., late in 1909, when dealing with the observations at Kodaikánal during the previous year.

In July 1908 the permanent observer proceeded on three months' leave; immediately after the change of observers the magnetic moment fell 0.46 C. G. S. unit and the base line $10 \gamma$ both returning to their previous values when the permanent olserver resumed his duties.

It was clear that a personal equation existed, but the cause was not at first sight apparent: the individual value of " m " were in excellent agrec-
ment but were consistently high in the one case and consistently low in the other.
On recomputing the base lines, however, from the deflection observations only of both observers, using the same mean value of magnetic moment throughout it was found that the base lines were now in good agreement and it was plain that the personal equation must be due to persistent error in the vibration observations.

Experiments were then made at Dehra Dūn, where an electric chronograph is available, with the standard instrument; in December 1909 it was found that the observer's personal error was nil, the mean magnetic moment by chronograph agreeing with that found by the eye and ear method, and it therefore scemed possible that the error at Kodaikānal might be an isolated case and dependent upon special causes connected with the change of observer.

Further experiments however at Dehra in March 1910 showed that the observer had developed a personal error of 0.4 unit since the previous December, and it was therefore decided to carry out further trials with the field instruments on return to recess quarters in April 1910: as an additional precaution, in several cases observers and instruments were interchanged.

It was found that while the chronograph values of " $\boldsymbol{m}_{0}$ " of different observers were in excellent agreement, those obtained by the eye and ear method showed at times considerable divergencies.

As a result of these experiments, the observer at Dehra Dūn was ordered to take a series of vibrations with the chronograph at intervals of about six weeks, and it was decided to include similar series in the bi-yearly comparisons of the field instruments.

The latter were inadvertently omitted in October 1910 but have been carried out in April and October of the present year.

The table below shows the personal errors of the field observers at these times; where a second value is given in brackets the error is that of a second observer : a plus sign means that the "eye and ear" determination of " $m$ " is higher than the chronographic.

|  | ${ }^{2} \mathrm{~A}$ | 3 A | 5 A | 4 A | 6 A | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| April 1910 | $\pm 0.0$ | $\pm 0.0$ | -0.4 | $+0.2$ | $\begin{aligned} & +0.8 \\ & (+0.0) \end{aligned}$ | $\begin{gathered} \pm 0.0 \\ (-0.2) \end{gathered}$ |
| April 1911 | Magnet | -0.6 | $-1.1$ | $\pm 0.0$ | $+0.8$ | $+0.2$ |
| October 1911 | $\begin{aligned} & \text { 2A not } \\ & \text { used. } \end{aligned}$ |  | -0.6 |  | $+0.6$ | -0.4 |

In the case of magnet 6 A it looks as if the errors were constant, while with 3 A and 5 A it might have been gradually developed during the interval, but inspection of the plotted mean values of " $m$ " for short periods shows that this is not the case and the elror probably varies within small limits while preserving the same sign; it is perhaps possible that in the field instruments the variation may have some connection with the value of H. F. and the consequent rate of vibration, though it is more likely to be dependent on the observers' physical condition.

Personal crror in the determination of H. F. does not appear hitherto to have received tho attention it deserves in connection with magnetic work: that it escaped carlicr attention in the Indian survey is due to the fact that though thero had been a number of cases in which observers were interchanged, there was either no unmistakeable evidence of personal equation
at the time of change, or the change was coincident with a decrease of the value of " $m$ " sufficient to mask the effect of personal equation.

Since then personal error is probably the main cause of the observational discrepancies, it follows that with the survey standard there is practically as much liability to observational error when using the eye and ear method as with the field instruments; consequently comparatively unimportant but unexplained divergencies in comparative results raise a doubt which extends even to the results of the standard mag. netometer. The necessity therefore arises not merely of correcting the field instruments to the standard but also of correcting the observations of the standard itself.

It proves then to have been advantageous that the discrepancies in comparative results were given more careful attention than they might previously have appeared to call for.

Since there appears to be no reason for anticipating changes in the indications of magnetic instruments other than

Method of correcting the standard instrument.
those due to change of constants, for which correction is made in the ordinary course, it follows that if the differences between instruments are accurately known at any particular time, any departure from those of differences at another time must be due to varying personal errors and clange of constants. From the foregoing discussion it will be evident that changes in constants other than the moment of inertia need not be further considered.

In comparing the instrumental differences it has been found more advantageous to compare the values of the base lines of the magnetograph found from various instruments at the time of comparisons, rather than to reduce all instruments to the standard by means of the curves; this course is the more advisable in cases where the comparisons have been made at various times and the "personal error" with the standard therefore liable to variation.

The comparisons with the chronograph since A pril 1910 have shown that the differences of instruments have remained constant and it therefore follows that determinations of H. F. in which the chronograph has been used for the vibration experiments may be accepted with confidence both as regards the value of H and " m ."

Any one of the chronographic comparisons since April 1910 may then be taken as the point of departure or zero, from which the differences of base lines for each instrument for comparisons previous to 1910 may he measured; if there were no personal error these differences would be the same in all cases (except for small and uniform changes due to change in the moment of inertia); wide divergencies are however found and the solution of the problem lies in the determination of the most probable personal errors for each instrument compared.

Fortunately the problem has been simplified by the fact that similar chronographic determinations of H . F. were made in 1902 with all the instruments (the chronograph was used solely as a time saving machine, the existenco of "personal error" being unsuspected) ; these observations, which were taken at the beginning of the survey, have been of great service in deducing the changes in the various moments of inertia, thus leaving "personal crrors" alone to be dcalt with.

The probable personal errors at any point of comparison are limited by the condition that the value of " $m$ " accepted can in no case exceed the value accepted for the previous comparisons.

In this way the most probable value for the difference of base line during any comparison from the zero point may be found, and hence the base line for the standard at the time of comparison, from which the moment of the standard magnet can be deduced.

The moment of the standard can thus be determined for two points each year corresponding to the time of the bi-yearly comparisons, and intervening values can be found by interpolation when the change in the interval has been small: from these values the mean base lines and monthly mean values can be recomputed.

At the other observatories comparisons are made only once a year with usually a single instrument, and the accuracy of the determination of the "personal crror" depends on the accuracy of the interpolated value of " $m$ " of the travelling instrument. It is however probable that the decrease of moment in a magnet proceeds uniformly, and sudden falls of " $m$ " do not affect the rate of decrease: the rate of decrease of " $m$ " with the majority of the survey magnets is moreover so small that crrors of interpolation should usually be negligible.

The investigation is still in hand and will be referred to more fully in the next report ; it is hoped the above outline of the method adopted will suffice to show that the elimination of "personal errors" is to a large extent a " trial and error" process and therefore necessarily laborious; the final test, lies in a comparison of the monthly mean values of H at the various observatories after correcting for secular changes. For the purpose of this comparison it is necessary to have the same series of quiet days, and this was an additional reason for the selection and computation of a new series of days, to which reference was made earlier in this report.

There are two other causes of discrepancies which may be briefly noticed

Other causes of change in instrumental differences.

These are-
(a) Thermometric errors.
(b) Temporary change in the magnetic field due to the presence of magnetic material.
Thermometric errors include (1) the gradual zero-creep inseparable from all mercury in glass instruments, and (2) those due to unexpected changes of correction such as a slight dislocation of the mercury column.

The former have been guarded against by redetermination of the zero point; instances of the latter are however not infrequent in India especially in horizontal thermometers such as in the deflection obscrvation.

Several thermoneters have been rejected for the latter trouble and it is possible that in some cases there were unsuspected errors at the time of comparison.

The second cause of error is probably rare though there appears to be an undoubted instance in Dehra Dūn observatory in October 1003; the possibility of such an error was alluded to in the report for $190+05$ in discussing the change in the differences of declination between the North and South houses.

It is probably due to other magnets not having been removed to a rafe distance; the values of P, " m " and H may be altered.

Only one instrument will usually be affected, and in such cases the observations must be rejected and the probable value of the base line found from the remaining instruments.

## II.-WORKING OF THE OBSERVATORIES.

A - Dehra Don Observatory.

1. General remarks on toorking. -The observatory remained in charge of Surveyor K. K. Dutta until March 1911, when he was relieved by magnetic observer Shri Dhar.

The magnetographs have given good results throughout the year ; the $\dot{\text { V. F. instrument, as usual, required the balance to be adjusted on several }}$ occasions.

The rainfall in 1911 was much below the average and there was consequently no difficulty in keeping the under-ground room dry : the proposed plastering of the walls and floor to prevent the percolation of subsoil water has been postponed to enable the observatory to co-operate in the special programme of observations arranged in connection with the British Antarctic expedition, and will be put in hand in the beginning of May next.
2. Mean values of $H . F$. and declination constants.-The following table gives the mean monthly values of the magnetic collimation, and the distribution co-efficients $\mathrm{P}_{1 \cdot 2}$ and $\mathrm{P}_{2 \cdot 3}$ and the mean value of " $\mathrm{m}_{0}$ " used in the computation of the results for 1910 :-

Mean values of the constants of the Magnetometer No. 17 in 1910.

3. Mran base line values.-The table below gives the mean values of the H. F. and declination base lines, actually used to obtain the values of foree, etc., given in the tables at the end of this report.

The values of H. F. and V. F. should be regarded as preliminary only, pending the results of the investigation into the subject of "personal error" and the addition of the $Q$ term: the present values have been obtained in the same manner as those of previous years, with which they are therefore directly comparable.

The V. P. base lines are not given : irregular changes of base line are to be expected in these instruments, the effects of which are minimized by the practice of observing values of dip daily with the Schultze earth inductor.

Abstract of Base Line values of Magnetographs in 1910.

4. Mean scale values and temperature ranyes.-The mean scale value of the H. F. magnetograph was $4.09 \gamma$ for an ordinate of 0.04 inch up to June $23 \mathrm{rd}, \mathrm{l} 910$, when the instrument was re-adjusted and the torsion head turned after which the value rose to $4 \cdot 12 \gamma$.

The mean scale value of the V. F. instrument varied from $4 \cdot 4 \gamma$ to $5 \cdot 3 \gamma$.
The mean temperature of the observatory for the year was $27^{\circ} \cdot 2 \mathrm{C}$, the maximum and minimum monthly mean values being $27^{\circ} \cdot 3 \mathrm{C}$ and $27^{\circ} 2 \mathrm{C}$, Which is very satisfactory: the temperature of reduction is $27^{\circ} \mathrm{C}$.

- The mean scale value of the deolination instrument remained 1.03 (minutes) for an ordinate of 0.04 inch.

5. Mean monthly values and secular ohange, 1909-10. -The following table gives the mean monthly values of the magnetic elements for $1909 \cdot 10$ and the changes during that period deduced therefrom. There appoars to have been an increase in the rate of secular change in Declination, which is confirmed by the results from the other Survey Base stations :-

Secular changes at Dellra Dün in 1909-10.

| Mostins. | Hobizontal Fobct$3: 000 \mathrm{C} .0 . \mathrm{S},+$ |  |  |  |  |  |  |  |  | Vertionl Fohce -31000 C. G. B.+ |  |  | Remarie. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1000. | 1010. | Eccular ohange. | 1000. | 1010. | Becular char go. | 1000. | 1010. | Secular cliango. | 1000. | 1010. | Scentar chungo |  |
|  | $\gamma$ | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | , | , | , | ' | , | , | $\gamma$ | $\gamma$ | $\%$ |  |
| Jounary . - | 278 | 203 | -15 | 980 | 33. 4 | $-2 \cdot \mathrm{e}$ | 45.1 | 62.0 | $+0 \cdot 0$ | 850 | 072 | +119 |  |
| Feiorary . | 280 | 261 | 25 | $36 \cdot 8$ | 93.4 | 24 | $45 \%$ | 62.2 | 0.6 | 870 | 07.4 | 09 |  |
| slarelh . | 277 | 200 | 11 | 36.0 | $33 \cdot 3$ | 2.9 | 45 | 5.4 | 0.5 | 872 | 082 | 110 |  |
| April | 207 | 256 | 41 | 95.0 | $32 \cdot 2$ | $2 \cdot 0$ | 46.4 | 63.1 | 77 | 883 | 090 | 209 |  |
| Blay | 200 | 270 | 20 | 94.8 | 92. 3 | $2 \cdot 0$ | $48 \cdot 3$ | 63.6 | 78 | 803 | 1,000 | 119 |  |
| Jnne | 200 | 20.4 | 92 | 34.0 | $31 \cdot 8$ | $2 \cdot 8$ | 40.6 | 64.3 | 77 | 003 | 1,016 | 112 |  |
| July | 203 | 280 | 24 | 347 | 31-3 | 9.4 | 40.7 | 51.8 | $8 \cdot 1$ | 002 | 1,030 | 128 |  |
| Augutt . . | 202 | 269 | 90 | 34.4 | 91.4 | 90 | 40:8 | 56.0 | $8 \cdot 8$ | 002 | 1,029 | 127 |  |
| September | 205 | 2 E 5 | 10 | 34.1 | ${ }^{1} 1.1$ | $9 \cdot 0$ | 51.2 | 60.0 | $4 \cdot 8$ | 050 | 1,088 | ${ }^{\text {80 }}$ |  |
| Oetinter . . | 294 | 241 | + 7 | 34.0 | $91 \cdot 3$ | 9.9 | $52 \cdot 3$ | 577 | $5 \cdot 4$ | 051 | 1,160 | 105 |  |
| Norether . | 240 | 243 | $-3$ | $3 \cdot 1.8$ | 30'8 | $9 \cdot 4$ | 61.8 | 59'1 | $0 \cdot 6$ | 940 | 1,667 | 121 |  |
| Decemiber . | 258 | 249 | 10 | $38 \cdot 2$ | 90.4 | $2 \cdot 6$ | ${ }^{51} \cdot 0$ | $58 \cdot 1$ | 6.2 | ¢0¢ | 1,071 | 100 |  |
| Menng | 270 | 267 | -10 | 94•8 | 91.0 | $-2 \cdot \theta$ | 49.0 | 64.8 | $+8 \cdot 0$ | 009 | 1,010 | +110 |  |

## B.-Barrackpore Obselvatory.

1. General remarke on working.-Magnetic observer K. N. Mukerji was in charge of the observatory throughout the jear.

The magnetographs worked satisfactorily throughout. It was noted in last year's roport that the H. F. base line at Barrackpore showed considerable annual variation, a rapid fall in November and December being followed by a sharp rise in February and March, the values for the period May to October remaining practically unchanged. The cause of this variation whioh is most marked at Barrackpore remains obscure ; it was thought to be connected with the annual range of temperature of the observatory which is decidedly larger at Barrackpore than elsewhere and this view received support from the fact
that at Kodaikānal where the temperature range was least, there was practically little or no indication of annual variation.

The monthly mean temperatures at Barrackpore during 1910 however show so little variation that the connection of the phenomenon with temperature is doubtful, though it may be remarked that the agreement of the monthly mean temperatures is somewhat fortuitous, the temperalure range in some months being considerable.

The mean monthly values of force computed with the observed base lines, exhibit an annual variation which accords with that obtained from other observatories, and the base line variation cannot be due to changes in temperature co-efficient or scale value; it therefore seems clear that the variation is due to mechanical and not magnetic causes.
2. Mean values of $H$. F. and declination constants.-The table below gives the mean monthly values of the Declination and H. F. constants duxing 1910 : -

Mean values of the constants of the Magnetometer No. 20 in 1910.

3. Mean Base Line valucs.-The following table gives the mean observed values of the Base Lincs of the Declination and Horizontal Force of mag-
netographs : the accepted values are those actually used in the computation of the monthly mean values.

The V. F. base lines are not given owing to frequent changes.
Abstract of base line value of Magnetographs in 1910.

4. Scale values and temperature range.-The mean scale values for the, year are as follows:-

```
H. F.
```



The mean temperature of the observatory for the year was $32^{\circ} \cdot 2 \mathrm{C}$ with maximum and minimum monthly values of $32^{\circ} \cdot 2 \mathrm{C}$ and $31^{\circ} 40$ : the range in
several months was however considerably greater than these figures rould suggest.

The temperature of reduction is $31^{\circ} \mathrm{C}$.
5. Secular changes, 1909-10. -The following table gives the mean monthly values of the magnetic elements for 1909 and 1910 and the secular changes during the interval:-

These values should be regarded as preliminary only.
Secular changes at Barrackpore in 1909-10.

| Mostres. | Hobizontal Fobce$-97000 \text { C. G. B. + }$ |  |  | Deolination E. $0^{\circ}+$ |  |  | $\text { D. }_{\text {DIP }} 0^{\circ}+$ |  |  | Featical, Foher $\cdot 22000$ C. G. S. + |  |  | Bemiat. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | $\checkmark$ | , | 1 | , | , | , | $\boldsymbol{\gamma}$ | $\gamma$ | $\gamma$ |  |
| Janamry - . | 301 | 318 | $+17$ | 02.9 | $58 \cdot 1$ | -3.8 | 96.8 | 40-3 | $+3 \cdot 5$ | 71 | 133 | $+62$ |  |
| Pebroary . . . | 907 | 917 | 10 | $62 \cdot 5$ | 67.0 | 4'0 | $30^{\prime} 0$ | 40.0 | 43 | 72 | 141 | 613 |  |
| March . . . | 205 | 323 | 28 | 62'2 | $67 \cdot 4$ | 4-8 | 97'6 | $40 \cdot 6$ | 8-3 | 78 | 14) | 65 |  |
| April . . . | 315 | 320 | 5 | 61.6 | 56.6 | 5.0 | 37.0 | 41.0 | $4 \cdot 6$ | 83 | 153 | 71 |  |
| Nay . . . . | 900 | 331 | 22 | $81 \cdot 1$ | 60.1 | 5.0 | 97.0 | $41 \cdot 0$ | 4-3 | B8 | 104 | 70 |  |
| June - . | 910 | 930 | 20 | 60.9 | $56 \cdot 8$ | $5 \cdot 1$ | 98.1 | 42\%1 | $6 \cdot 0$ | 00 | 107 | 71 |  |
| Joly . . . . | 308 | 337 | 20 | 00.0 | 65.2 | $5 \cdot 4$ | 38-7 | 42.0 | 33 | 103 | 168 | 65 |  |
| Auguat . . . | 303 | 330 | 33 | 00-2 | 54.6 | 6.7 | $90^{-1}$ | 420 | $3 \cdot 6$ | 106 | 181 | 75 |  |
| Beptember . . | 201 | 341 | 50 | $50 \cdot 8$ | 64.2 | $5 \cdot 0$ | 40-4 | 130 | $2 \cdot 6$ | 118 | 180 | 83 |  |
| Oclober . . . | 261 | 327 | 03 | $50 \cdot 7$ | 64.0 | 6.7 | 42.0 | $13 \cdot 6$ | 1'8 | 123 | 187 | 84 |  |
| Norember . . | 203 | 931 | 39 | 6022 | $63 \cdot 6$ | 5.7 | $40 \cdot 3$ | 4.1 | $3 \cdot 8$ | 117 | 100 | 70 |  |
| December - | 902 | 341 | 30 | $68 \cdot 3$ | 52. 8 | $6 \cdot 4$ | $40 \cdot 8$ | $43 \cdot 6$ | $2 \cdot 7$ | 130 | 103 | 03 |  |
| Mcada - . | 300 | 320 | +20 | 60.7 | 55.5 | $-6.3$ | $38 \cdot 7$ | 42.2 | $+3 \cdot 5$ | 00 | 108 | $+80$ |  |

> C.-Todegoo Odsenvatony.

1. General remarls on working.-The observatory romained in charge of Abdul Majid during the year.

The H. F. and declination magnetographs worked satisfactorily throughout the year.

The 'V.F. magnetograph which had given trouble during the latter months of 1910 owing to frequent changes of zero, was readjusted by the officer in charge in December 1910. This readjustment was not altogether successful and a further readjustment was found necessary in July 1911 : it is feared that the curves for the intervening period will have to be rejected.
2. Mean values of $\Pi . F$. and Declination constanls.-The following talle gives the mean monthly valucs of the magnetic collimation $P_{1^{2} 2}$ and $P_{2,9}$ and the
magnaptic moment during 1910 : the accepted values of $P_{1.2}$ and " $m_{0}$ " are those used in the computation of the observatory results :-

The magnetic moment of magnet 19A continued to decrease rapidly throughout the year; this rapid decrease has been exhibited since the magnet was taken into use in May 1908 and it is evident that the magnet was not properly "aged" by the manufacturers. The rate of decrease was less rapid in 1910 and it is hoped this improvement will continue.

Mean values of the Constants of the Maynetometer No. 19 an 1910, with Magnet No. 19A.

3. Mean Base Line values.-The table below gives the accepted Base Line of the H. F. and Declination magnetographs, used in computing the monthly values.

The observed Deolination base lines showed considerable variation and were rejected for the reasons given in the report for 1909-10.

During the inspection of tho officer in charge in December 1910, it was found that tho torsion tube was not rigidly conncoted with the magnet box, owing to shake in the brass bush through which the connection is made. There was thus liability to observational and arimuthal errors sufficient to account for the variations in magnetic collimation and baso lino values. This defect was romedied and the base line rialucs have sinco been satisfactory.

The Horizontal Force observations were not affected; the observatory instrument is of the Kew pattern in which different magnet boxes are used for declination and deflection observations.

Abstract of Base Line valuc of the Magnetographs in 1910.

4. Scale values and temperature range. -The mean scale values in 1910 are as follows:-

The mean temperature of the observatory was $89^{\circ} 0 \mathrm{~F}$. with maximum and mininum mean monthly values of $89^{\circ} 2 \mathrm{~F}$. and $88^{\circ} \cdot 7 \mathrm{~F}$.
5. Sccular changes, 1900-10.-The following table gives the mean monthly values of the magnetic elements and the secular change for the period 1909-10.

Secular changes at Toungoo in 1909-10.


## D-Kodatranal Observatory.

1. General Remarks on working.-Surveyor Ramaswami Iyengar was in charge throughout the year.

Thanks are due to the Dircetor, Solar Physics Observatory, for his cordial assistance in all matters connceted with the magnetic work.

The instruments worked satisfactorily throughout the year, except that as in other observatories it was necessary to adjust the balance of the V. F. magnet on several occasions.
2. $\boldsymbol{H} . \boldsymbol{F}$. and dectination constants.-The table below gives the mean observed monthly values of marnetic collimation, $P_{1: 2}$ and $P_{2: 3}$ and magnetic moment : the accepted values of $\mathrm{P}_{1.9}$ and " $\mathrm{m}_{0}$ " are those used for computing the monthly mean base lines.

It will be noticed that the observed values of " $m_{0}$ " show both sudden and gradual decreases of " $m_{0}$ " which have been disregarded in deriving the accepted value: this conclusion was arrirel at alter consideraion of the resulting monthly meau ralues of $\mathrm{H}, \mathrm{F}$. and independently of the investijation of "personal error " referred to elsewhere in this report, which has not yet been completed.

Mean values of the constants of the Magnctomeler No. 16 in 1910.

3. Mean Base Line calues.-The table below gives the mean monthly observed and accepted values of the Declination and H. F. base lines: the accepted values are those used in computing the monthly mean values.

Alstract of Base Line value of Magnetographs in 1910.


- 4, Scale values and temperature range. -The mean scale values for the magnetographs during 1910 are as follows :-


The mean temperature of the magnetograph room for the year was $18^{\circ} 90$ with maximum and minimum monthly mean values of $19^{\circ} 1 \mathrm{C}$ and $18^{\circ} 7 \mathrm{C}$.

The selected mean temperature is $19^{\circ} \cdot 0 \mathrm{C}$.
5. Secuiar changes, 1909-10.-The table below gives the mean monthly values of the magnetic elements for 1909-10 with the secular change deduced during the interval :-

Secular changes at Koduitianal in 1909-10.

| Montif. | IIonizostal Foher $37000 \mathrm{C} .6 .5 .+$ |  |  | $\begin{aligned} & \text { Decunation } \\ & \text { W. } 0^{*}+ \end{aligned}$ |  |  | $\mathrm{N} \cdot 3^{\mathrm{Im}}+$ |  |  | Yehtical fobie0.000 C. (i. S. + |  |  | Bryaice. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1401. | 1010. | $\begin{aligned} & \text { ancular } \\ & \text { vibauge. } \end{aligned}$ | 1003. | 1010. | Pircolar <br> vhango. | 1009. | 1010. | $\begin{aligned} & \text { Ciculiur } \\ & \text { clunge. } \end{aligned}$ | 1000. | 1010. | Secolar change. |  |
|  | $\gamma$ | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | 1 | , | , | , | , | , | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | 7 |  |
| Jansaty | 413 | 431 | +30 | 47.0 | 62.5 | $+4.6$ | 88.1 | 41.8 | +5.7 | 950 | 422 | $+66$ |  |
| Pobrang , | 450 | 413 | 19 | 48.2 | 83.0 | 48 | 30.9 | $49 \cdot 1$ | 8.2 | 908 | 435 | 70 |  |
| Narch | 4:0 | 450 | 30 | 48.8 | 60.3 | $4 \cdot 8$ | $30 \cdot 8$ | 43.4 | 00 | 986 | 498 | 74 |  |
| $\Delta_{\text {a }}$ ril | 460 | 473 | 7 | 403 | 6.42 | $4 \cdot 0$ | $38 \cdot 3$ | $43 \cdot 7$ | 64 | 382 | 442 | 60 |  |
| Hos . | 463 | 4,3 | 20 | $40 \cdot 8$ | 51.7 | 49 | 38.5 | 441 | 50 | 895 | 410 | ${ }^{61}$ |  |
| June - . | 464 | 48: | 19 | 5191 | 650 | 40 | 30.0 | 45.2 | $0 \cdot 2$ | 380 | 463 | ${ }^{\boldsymbol{\theta}}$ |  |
| July . | 400 | 48.4 | 18 | $60 \cdot 3$ | 55.3 | 5.0 | 30.0 | 45.0 | 0.0 | 400 | 400 | 00 |  |
| ${ }^{40} \mathrm{grat}$ | 4.4 | 100 | 13 | 50.7 | 65.7 | 8.0 | 30.0 | 40.4 | $0 \cdot 6$ | 401 | 478 | 71 |  |
| Eeptember | 467 | 40.4 | 27 | 60.9 | 65.0 | B-0 | $40 \cdot 1$ | 46.7 | 0.6 | 402 | 478 | 44 |  |
| October | -199 | 970 | 10 | $61 \cdot 3$ | $66 \cdot 2$ | 40 | 4.9 | 47.2 | $0 \cdot$ | 403 | 491 | 70 |  |
| Norember | 40) | 403 | 33 | 51.7 | $67 \cdot 2$ | 55 | 41.6 | 470 | $6 \cdot 1$ | 417 | 4S0 | 69 |  |
| December | 403 | 511 | 48 | 59•1 | 174 | $5 \cdot 3$ | 12.1 | 17.8 | 6.7 | 429 | 460 | 68 |  |
| Heaut | 459 | 45 | $+8$ | $10 \cdot 1$ | 56.0 | + 50 | 90.1 | 4512 | +0.1 | 901 | 450 | + $\boldsymbol{\theta}$ |  |

## III．－TABLES OF RESULTS．

## Indix to tables．

A．Approximate values of the magnetic elements at stations of observation during 1910－11．
$B$ ．Mean values of the magnetic elements at the observatories for 1910.
C．Classification of ourves and dates of magnetic disturbances in 1910.
D．Tables of results at Dehra Dūn．

| $\boldsymbol{E}$. | $"$ | ＂ | Barrackpore． |
| :--- | :--- | :--- | :--- |
| $\boldsymbol{F}$. | ＂ | ＂ | Toungoo． |
| $\boldsymbol{G}$. | ＂ | ＂ | Kodaikānal． |

For each observatory the following tables are given ：－
1．Hourly means corrected for temperature，of Declination，Horizontal Force，Verti－ cal Foroe and dip from 5 selected quiet days per month．
2．Diurnal inequality of each deduced from 1 ．
4．－Abstract shooing approximute magnetic values at stations observed at by No． 18 Party during season 1910－11．

Field stations．

| $\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$ | Name of etation． | Latitude． | Longitude． |  | Deolination． | Horizontal furce． c.a.s. | Remabig． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1331 | Mussoorie | 302740 | $78 \quad 510$ | $44 \quad 12$ | E 235 | 0.3312 |  |
| 1332 | Port Anson | 12180 | 9243 ？ | 767 | W 0015 | －3952 |  |
| 1333 | Port Andaman | 124810 | 924020 | 914 | ， 012 | －39．49 |  |
| 1334 | Paget Ioland． | 132550 | 9250 | $10 \quad 44$ | \％ $0 \quad 10$ | －3952 |  |
|  | $\underset{\text { (surface). }}{\text { Mgsore }} \text { Mioes }$ | 125530 | 781540 | 955 | ， 054 | $\cdot 3815$ |  |
|  | Mysore Mines（an－ derground）． | 125530 | 781540 | 966 | ， 159 | ． 3820 |  |
| 1336 | Jhala ．． | $31 \quad 150$ | 784250 | $45 \quad 4$ | E 238 | －3284 |  |
| 1337 | Barahat | 304430 | 782710 | $44 \quad 44$ | 1 238 | －3291 |  |
| 1338 | Barmer | 254440 | 712640 | $36 \quad 31$ | ， 150 | －3436 |  |
| 1339 | Dhoda | 32950 | 744150 | $46 \quad 44$ | ， 311 | －3192 |  |
| 1340 | Behēri ． | 332320 | 734350 | $48 \quad 23$ | $\because 38$ | －3122 | 号 |
| 1341 | $\underset{\text { Manree }}{\substack{\text { Murre }}} \quad \text { (Suany }$ | 335510 | 732320 | 496 | ， 349 | －3093 | － |
| 1312 | Muzaforabbēd | 342210 | 732740 | $49 \quad 45$ | ， 955 | －3074 | g |
| 1343 | Uri | 31.50 | $74 \quad 250$ | 4918 | ， 357 | －3099 | 8 |
| 1344 | Shalura | 312930 | 74740 | $49 \quad 58$ | ， 40 | －3056 | $\pm$ |
| 1345 | Gurais． | 3438 0 | 745150 | $50 \quad 14$ | ＂ 40 | －3056 | 蕓 |
| 1346 | Hirpur | 334050 | 74430 | $48 \quad 56$ | ， 320 | －3119 | $\stackrel{ \pm}{\square}$ |
| 13.47 | Italamabad | 334350 | $75 \quad 850$ | $48 \quad 58$ | ， 343 | －3115 |  |
| 13.8 | Inshin ． | 334830 | 753340 | 497 | ， 350 | －3116 |  |
| 1349 | Sof | 33370 | 751740 | $48 \quad 46$ | ， 337 | $\cdot 3131$ |  |
| 1351） | Bonibal | 332620 | 75120 | $48 \quad 38$ | ， 341 | $\cdot 3136$ |  |
| 1351 | Rnmban | 331330 | 7 T 1440 | $48 \quad 13$ | ， 340 | －3157 |  |
| 1352 | Ullampur | 325520 | $75 \quad 730$ | 4761 | ＂ 3 38 | －3160 |  |
| 1353 | Poni | 33150 | 744150 | 47 41 | ＂ 350 | $\cdot 3161$ |  |
| 130̆ヶ | Thana Mandi | 333240 | 74220 | $48 \quad 13$ | ， 340 | 3167 |  |
| 1355 | Cliaggab Rarai | 331410 | 741560 | 1922 | ， 3 22 | －3132 |  |
| 1968 | Bhintar | 325820 | 71450 | ． 47 bl | ， 320 | 2149 |  |

Abstract showing appro．imate magnetic values at shations observed at by No． 18 Party during scason 1910－11－continued．

Old Stations rb－obgehyed．

| $\dot{\circ}$ |  | Latitade． | Longitude | Dip． | Deolination． | Horizontal Force． |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | －＇＂ | －，＂ | －， |  | C．G．s． |  |
| 16 | Ruls Junction | $\begin{array}{lll}27 & 48 & 20\end{array}$ | $68 \quad 30 \quad 20$ | $39 \quad 40$ | E． 23 | 0．3349 |  |
| 71 | Lahore | $\begin{array}{llll}31 & 35 & 50\end{array}$ | 74.18 | 4614 | ， 266 | 0.3208 |  |
| 88 | Prshāmar | $34 \quad 0 \quad 40$ | $\begin{array}{llll}71 & 33 & 40\end{array}$ | $49 \quad 5$ | \％ 349 | $0 \cdot 3083$ |  |
| 92 | Kundian | $\begin{array}{lll}32 & 27 & 30\end{array}$ | $\begin{array}{lll}71 & 28 & 20\end{array}$ | 4749 | ＂ 326 | 0.3099 |  |
| 105 | Sachio | 21440 | $\begin{array}{llll}72 & 52 & 40\end{array}$ | 2742 | 1） 323 | 0.3655 |  |
| 124 | Bīkner | $28 \quad 0 \quad 40$ | $\begin{array}{llll}73 & 18 & 50\end{array}$ | $40 \quad 14$ | ＂ 21 | 0.3387 |  |
| 130 | Ajmer | $\begin{array}{llll}26 & 27 & 30\end{array}$ | 74.358 | $37 \quad 32$ | \％ 156 | 0.3467 |  |
| 134 | Mirpur Khas | $\begin{array}{lll}25 & 31 & 40\end{array}$ | $69 \quad 0 \quad 40$ | $35 \quad 50$ | ＂ 151 | 0.3448 |  |
| 138 | Viramgām | $\begin{array}{llll}23 & 8 & 10\end{array}$ | $72 \quad 3 \quad 30$ | 3133 | ＂ 26 | 0.3567 |  |
| 178 | Dhond | $\begin{array}{lll}18 & 28 & 0\end{array}$ | $\begin{array}{llll}74 & 36 & 10\end{array}$ | 2228 | 1． 022 | 0.3711 |  |
| $1 ; 5$ | Hotgi | $\begin{array}{lll}17 & 33 & 40\end{array}$ | $76 \quad 0 \quad 20$ | $20 \quad 35$ | ＂ 08 | $0 \cdot 3762$ |  |
| 181 | Guntakal | $\begin{array}{lll}15 & 10 & 20\end{array}$ | $\begin{array}{lll}77 & 22 & 40\end{array}$ | 15.30 | W． 026 | $0 \cdot 3800$ |  |
| 186 | Arhonum | $13 \quad 4 \quad 30$ | $79 \quad 40 \quad 20$ | $10 \quad 26$ | ＂） $0 \quad 087$ | 0.3854 |  |
| 187 | Perambūr | 13640 | 80 | $10 \quad 34$ | 11049 | 0.3840 |  |
| 199 | Cannanore | $\begin{array}{lll}11 & 62 \quad 30\end{array}$ | $\begin{array}{lll}75 & 22 & 0\end{array}$ | 834 | ， 121 | $0 \cdot 3807$ | 品 |
| 207 | Birur | $\begin{array}{llll}13 & 35 & 50\end{array}$ | $\begin{array}{llll}75 & 58 & 10\end{array}$ | $11 \quad 47$ | ＂ $0 \quad 40$ | $0 \cdot 3795$ | 号 |
| 216 | Mirāj | $\begin{array}{llll}16 & 46 & 10\end{array}$ | $74 \begin{array}{lll}74 & 38 & 10\end{array}$ | $19 \quad 37$ | ， $0 \quad 9$ | $0 \cdot 3769$ | ${ }^{\circ}$ |
| 223 | Manmēd | $\begin{array}{llll}20 & 14 & 40\end{array}$ | $74 \quad 26 \quad 20$ | $26 \quad 22$ | E． 18 | $0 \cdot 3620$ | g |
| 232 | Delbi | $28 \quad 40 \quad 20$ | $\begin{array}{llll}77 & 14 & 20\end{array}$ | 4123 | ＂ 159 | $0 \cdot 9401$ | 吕 |
| 283 | Sirsm | $\begin{array}{llll}29 & 39 & 10\end{array}$ | $75 \quad 2 \begin{array}{lll}70\end{array}$ | $42 \quad 37$ | ， 234 | 0.3337 | \％ |
| 328（a） | Tinnevelly | 8440 | $\begin{array}{llll}77 & 42 & 30\end{array}$ | 055 | W． 139 | 0.3796 | 吕 |
| 332 | Mandapam | $\begin{array}{lll}9 & 16 & 50\end{array}$ | 79 8 8 30 | 137 | ＂ 126 | 0.3823 | $\stackrel{\text { \％}}{ }$ |
| 337 | Tanjore | $\begin{array}{llll}10 & 46 & 40\end{array}$ | 7988 | 444 | ， 122 | 0.3825 | 田 |
| 975 | Parbhani | 19 lat 20 | $56 \quad 46$ | 2451 | E 00 | 0.3705 |  |
| 384 | BezwEda | $\begin{array}{llll}16 & 31 & 0\end{array}$ | $\begin{array}{llll}80 & 36 & 60\end{array}$ | $17 \quad 52$ | W． $0 \quad 33$ | 0.3821 |  |
| 481 | Allāhēbet | $\begin{array}{llll}25 & 27 & 39\end{array}$ | $\begin{array}{lll}81 & 49 & 20\end{array}$ | $95 \quad 41$ | E． 117 | 0.9583 |  |
| 483 | Manilpur | $25 \quad 3 \quad 10$ | 8150 | $35 \quad 14$ | ， 114 | $0 \cdot 3690$ |  |
| 489 | Monghyr | $\begin{array}{llll}25 & 23 & 10\end{array}$ | $\begin{array}{llll}80 & 27 & 50\end{array}$ | $35 \quad 43$ | \％ 111 | 0.3630 |  |
| 600 | Sini | 22470 | $85 \quad 56 \quad 50$ | $30 \quad 32$ | ＂ $0 \quad 50$ | $0 \cdot 3742$ |  |
| 504 | Rāniganj | $\begin{array}{llll}23 & 35 & 30\end{array}$ | $87 \quad 7 \quad 30$ | 3211 | ＂ 0.55 | 03706 |  |
| 505 | Katraggarh | $\begin{array}{llll}23 & 48 & 0\end{array}$ | $86 \quad 18 \quad 0$ | 3246 | ＂ 0058 | $0 \cdot 3678$ |  |
| 606 | Giridih | $\begin{array}{llll}24 & 10 & 50\end{array}$ | $80 \quad 19 \quad 20$ | 3320 | 1． 057 | $0 \cdot 3665$ |  |
| 612 | Busar | $25 \quad 93 \quad 30$ | $83 \quad 57 \quad 40$ | 366 | ， 39 | $0 \cdot 3025$ |  |
| 518 | Kataraian Ghät | $\begin{array}{llll}28 & 19 & 60\end{array}$ | 81780 | $40 \quad 48$ | 1． 20 | $0 \cdot 9450$ |  |
| 627 | Chäpra | $\begin{array}{lll}35 & 48 & 10\end{array}$ | $84 \quad 43 \quad 20$ | $36 \quad 67$ | ， 028 | 0.3597 |  |
| 630 | Bedtinlt | $\begin{array}{llll}28 & 48 & \text { b0 }\end{array}$ | 84 919 | $38 \quad 19$ | ，1 196 | 0.3540 |  |
| 54.4 | Líliôo | $25 \quad 5 \quad 30$ | $76 \quad 3080$ | 3531 | ＂ 121 | $0 \cdot 9527$ |  |
| 645 | Hina | 24 $10 \quad 60$ | $78 \quad 110$ | 3315 | ＂ 111 | $0 \cdot 3672$ |  |

Abstract showing approvimate maguctic palues at stalions observed at by No． 18 Party during suason 1910－11－contiuuel．

Old Stations re－obseived－comcluled．

|  | Name of Stntions． | Latitude． | Lo：gitudo． | Dip． |  | Declination． | Hurizuntal | Remakts． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | －，＊ | －，v | － | ， |  | C G．S． |  |
| 657 | Indore | $22 \quad 42 \quad 10$ | $\begin{array}{lll}75 & 53 & 40\end{array}$ |  | 52 | E． 0 45 | $0 \cdot 3680$ |  |
| 573 | Cawnpore | 2； 270 | $80 \quad 210$ | 37 | 98 | ＂ 141$)$ | 03332 | ， |
| 698 | Käthroilun ． | $29 \quad 15 \quad 20$ | 7：1 32 50 |  | 25 | ＂ 217 | 0.3381 |  |
| 692 | Palasore | $21 \quad 30 \quad 30$ | $86 \quad 54 \quad 40$ | 28 | 19 | ， $0 \quad 27$ | 03763 | 光 |
| 699 | Berhampur ． （Ganjím） | $\begin{array}{lll}19 & 18 & 10\end{array}$ | $\begin{array}{llll}8.6 & 48 & 40\end{array}$ | 23 | 53 | ＂ 07 | 03807 | $\begin{aligned} & \text { 品 } \\ & 0 \\ & 0 \end{aligned}$ |
| 710 | Cunbum | $\begin{array}{lll}15 & 35 & 5\end{array}$ | ．79 6－40 |  | 20 | W． 065 | 0.3816 |  |
| 746 | Cbūnda | $\begin{array}{llll}19 & 57 & 61\end{array}$ | $\begin{array}{lll}79 & 17 & 40\end{array}$ |  | 20 | E． 0 24， | $0 \cdot 374.4$ | E |
| 765 | Raipur | $21 \quad 15 \quad 50$ | $81 \quad 38 \quad 20$ | 28 | 12 | ＂ $0 \quad 35$ | 0.3719 | $\stackrel{\text { g }}{\text { d }}$ |
| 779 | Anraoti | 21155 | $77 \quad 45 \quad 50$ | 27 | 46 | ， 0 14 | 0.361 .7 | 9 |
| 820 | Mymensingh | $\begin{array}{lll}24 & 46 & 0\end{array}$ | $\begin{array}{llll}90 & 23 & 40\end{array}$ | 34 | 47 | ， 15 | 03670 | $\stackrel{\text { H }}{ }$ |
| 831 | SÂntēhār | $\begin{array}{llll}24 & 48 & 10\end{array}$ | $88 \quad 59.20$ | 34 | 39 | ， 17 | 0，3678 | 鿖 |
| 860 | Lumding | $25 \quad 44 \quad 60$ | $\begin{array}{llll}93 & 10 & 40\end{array}$ | 36 | 26 | ， 108 | 0．3637 | ．$\frac{1}{1}$ |
| 873 | Jānıtāıa | $23 \quad 38 \quad 40$ | $80 \quad 48 \quad 50$ | 33 | 14 | ， $0 \quad 59$ | 00666 |  |
| 874 | Dumba | $2415 \quad 50$ | $87 \quad 1640$ | 33 | 38 | ， 112 | $0 \cdot 3665$ |  |
| 960 | Dumraon | $\begin{array}{llll}25 & 34 & 40\end{array}$ | $84 \quad 7 \quad 30$ | 36 | 17 | ， 0 b | 0.3542 |  |
| 987（a） | Ballià | $25 \quad 4510$ | $84.10 \quad 10$ | 37 | 8 | ＂ 0 53 | 0.3546 |  |
| 12056（a） | Srinagar | $34 \quad 9 \quad 50$ | $7 \pm 60 \quad 30$ | 49 | 27 | ＂ 351 | $030: 9$ |  |
| 1257（a） | Son：marg | $\begin{array}{llll}34 & 18 & 31\end{array}$ | $\begin{array}{llll}75 & 18 & 30\end{array}$ | 49 | 43 | ＂ 349 | 0.3084 |  |

## Detall Soryey Stations．



Abstract showing approximate magnetic values at stutions observed at hy No. 18 Parly

during season 1910-11-continued.
Defail Sulvey Stations-conimued.


Abstract showing approximate magnelic values al stations observed at by No. 18 Party during season 1910-11-aontinued.

Detail Sunvey Stationg-concluded.

| $\dot{\circ}$ | Name of Stations. | Latitade. | Lougitude. | Dip. | Declination. | Horizontal Force. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { dat } \\ & \stackrel{\rightharpoonup}{\mathbf{R}} \end{aligned}$ |  | - , " | - . " | - . |  | C. G.s. |  |
| 244D | Mudkutta | $23 \quad 56 \quad 30$ | $\begin{array}{lll}86 & 12 & 30\end{array}$ | $33 \quad 27$ | E. 045 | $0 \cdot 3624$ |  |
| 245D | Rungamultee | $\begin{array}{lll}23 & 58 & 20\end{array}$ | $86 \quad 250$ | 337 | 1. 17 | 0.3585 |  |
| 246D | Clanusā | $25 \quad 31 \quad 10$ | $83 \quad 54 \quad 10$ | 3566 | - 110 | 0.3584 |  |
| 247D | Kiritpura | $\begin{array}{lll}25 & 33 & 0\end{array}$ | $83 \quad 56 \quad 20$ | $35 \quad 47$ | , 224 | 0.3577 |  |
| 248D | Muludeh | $\begin{array}{lll}25 & 31 & 40\end{array}$ | $\begin{array}{llll}94 & 1 & 10\end{array}$ | 3710 | - 310 | $0 \cdot 3609$ |  |
| 249D | Busoodhar | $\begin{array}{lll}25 & 27 & 20\end{array}$ | $84 \quad 30$ | $37 \quad 47$ | , 153 | $0 \cdot 3623$ |  |
| 200D | Uhroalee | $\begin{array}{llll}25 & 35 & 40\end{array}$ | $81 \quad 0 \quad 30$ | 38 | 1) 232 | 03553 |  |
| 251D | Chunda | $\begin{array}{llll}25 & 34 & 50\end{array}$ | 84420 | $37 \quad 49$ | 1, 01 | $0 \cdot 3530$ |  |
| 252D | Manikpur | $25 \quad 40 \quad 20$ | 84 $6 \quad 20$ | $36 \quad 61$ | " $0 \quad 29$ | 0.3589 |  |
| 253D | Rājapur | $25 \quad 4060$ | $84 \quad 940$ | 36131 | , 050 | $0 \cdot 3575$ |  |
| 254D | Oruk | $\begin{array}{llll}25 & 37 & 0\end{array}$ | $84 \quad 12 \quad 40$ | $36 \quad 16$ | - 111 | 0.3583 |  |
| 256 D | Rebeea | $\begin{array}{llll}25 & 33 & 0\end{array}$ | $84 \quad 13 \quad 10$ | 3615 | , 113 | $0 \cdot 56.4$ | 50 |
| 256D | Koorand | $\begin{array}{llll}25 & 28 & 40\end{array}$ | 84110 | $36 \quad 49$ | , $0 \quad 33$ | $0 \cdot 3566$ |  |
| 267 D | Nainge | $25 \quad 50 \quad 20$ | $\begin{array}{llll}84 & 42 & 50\end{array}$ | $37 \quad 23$ | 1. $0 \quad 45$ | $0 \cdot 3563$ | 㫛 |
| 253D | Mubārakpur. | $25 \quad 46 \quad 30$ | $81 \quad 40$ 30 | $37 \quad 22$ | " 039 | $0 \cdot 3606$ | 迼 |
| 259D | Telpa | $\begin{array}{lll}25 & 47 & 10\end{array}$ | $\begin{array}{llll}84 & 45 & 40\end{array}$ | $36 \quad 36$ | 1) $0 \quad 42$ | 0.3595 |  |
| 200D | Mashrak | 2660 | 84.4850 | $36 \quad 39$ | \% 119 | $0 \cdot 3563$ | $\stackrel{\square}{4}$ |
| 261D | Paterbi | $25 \quad 64 \quad 40$ | $81 \quad 48 \quad 20$ | $37 \quad 38$ | , 113 | $0 \cdot 3528$ | $\stackrel{\rightharpoonup}{5}$ |
| 262D | Reoti | $\begin{array}{lll}25 & 49 & 40\end{array}$ | $\begin{array}{lll}84 & 22 & 50\end{array}$ | 3642 | , 156 | $0 \cdot 3.78$ | . |
| 263D | Pheplua | $\begin{array}{llll}25 & 45 & 50\end{array}$ | $84 \quad 3 \quad 20$ | $37 \quad 34$ | " 17 | 0.3512 |  |
| 261D | Luthoodeeh | $\begin{array}{llll}25 & 42 & 10\end{array}$ | $83 \quad 5250$ | 360 | 1. 151 | 0.35!16 |  |
| 236 D | Buseneea | $\begin{array}{llll}25 & 37 & 10\end{array}$ | \&3 65 | $39 \quad 27$ | " 142 | 0.3578 |  |
| 266D | Eoliea | $\begin{array}{llll}25 & 33 & 0\end{array}$ | 84. 2740 | $38 \quad 6$ | , 127 | $0 \cdot 3589$ |  |
| 267D | Piaro . | $\begin{array}{lll}25 & 19 & 40\end{array}$ | 81210 | $35 \quad 38$ | - $0 \quad 59$ | $0 \cdot 3617$ |  |
| 268D | Bikramganj | $25 \quad 130$ | 8.150 | $35 \quad 26$ | י 16 | $0 \cdot 3 \dot{3} 3$ |  |
| 269D | Digara | $\begin{array}{llll}25 & 15 & 40\end{array}$ | AL $3 \quad 20$ | 3531 | 1) 126 | 03627 |  |
| 270D | Manoharpur . | $25 \quad 21 \quad 0$ | $\begin{array}{lll}83 & 54 & 20\end{array}$ | $35 \quad 37$ | , 132 | $0 \cdot 3616$ |  |
| 271D | Paruethoon | $25 \quad 1310$ | $\begin{array}{llll}83 & 48 & 30\end{array}$ | $35 \quad 25$ | 1. 125 | $0 \cdot 3603$ |  |
| 272D | Hohanea | $25 \quad 9 \quad 50$ | $\begin{array}{llll}83 & 37 & 30\end{array}$ | 3519 | , 18 | $0 \cdot 3599$ |  |
| 273D | Sabviãm | $\begin{array}{llll}24 & 57 & 10\end{array}$ | 84 0 | $34 \quad 53$ | , 13 | 0.3614 |  |

Repeat Statifas.

dbetraet showing approximale magnelic values at stations observed at by No． 18 Party during season 1910－11－conoluded．

Repear Stations－concladed．

| $\begin{aligned} & \text { Berial } \\ & \text { No. } \end{aligned}$ | Name of Stations． | Latitude． | Longitude． | Dip． | Deolination． | Hurirontel Foroe． | Rematieg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | －＇＂ | －＂ | －， |  | c．g．b． |  |
| VII | Bangalore | $\begin{array}{lll}12 & 69 & 35\end{array}$ | $77 \quad 35 \quad 68$ | 107 | W． $0 \quad 51$ | 3818 |  |
| VIII | Dhtrwir | $\begin{array}{lll}15 & 27 & 26\end{array}$ | 74.595 | 1544 | 1， 023 | ＇3766 |  |
| IX | Porbandar | $\begin{array}{lll}21 & 38 & 20\end{array}$ | $\begin{array}{lll}69 & 37 & 6\end{array}$ | 298 | E． 111 | －3588 |  |
| $\mathbf{x}$ | Fyzäbüd | $\begin{array}{llll}26 & 47 & 27\end{array}$ | $82 \quad 740$ | $38 \quad 12$ | － 138 | $\cdot 3525$ |  |
| XI | Sambalpur | $21 \quad 28 \quad 3$ | 836584 | $28 \quad 8$ | ＂ 0 36 | $\cdot 3730$ |  |
| XII | Wultair | $\begin{array}{lll}17 & 42 & 57\end{array}$ | $83 \quad 10 \quad 1$ | 2127 | ＂ 00 | 3789 | ¢0 |
| XIII | Darjeeling | $\begin{array}{llll}26 & 59 & 49\end{array}$ | $\begin{array}{lll}88 & 16 & 39\end{array}$ | $38 \quad 31$ | ， 121 | $\cdot 3568$ | 点 |
| XIV | Gaye | $\begin{array}{llll}24 & 46 & 30\end{array}$ | $84 \quad 58 \quad 54$ | 3431 | ， 058 | 3061 | ＇。 |
| xV | Secunderābēd | $\begin{array}{lll}17 & 27 & 11\end{array}$ | $78 \quad 29 \quad 16$ | $20 \quad 26$ | ＂ 066 | 3792 |  |
| XVI | Bhumēral． | 2188 | 75478 | $27 \quad 20$ | 1） 042 | $\cdot 3677$ | 晶 |
| XVII | Jubbulpore | 23 818 | $\begin{array}{llll}79 & 56 & 44\end{array}$ | 3121 | ， 0 0 54 | －3643 | 品 |
| XVIII | Tavoy | $\begin{array}{llll}14 & 4 & 60\end{array}$ | $\begin{array}{llll}98 & 12 & 30\end{array}$ | 12 ll | ＂ 020 | －3963 | ＂ |
| x18 | Lashio | $\begin{array}{llll}22 & 56 & 47\end{array}$ | $\begin{array}{llll}97 & 44 & 40\end{array}$ | 3121 | \％ 033 | $\cdot 3768$ | $\stackrel{9}{9}$ |
| XX | Akyab | $20 \quad 763$ | $\begin{array}{llll}92 & 53 & 18\end{array}$ | 2533 | \％ 0 30 | －3839 | － |
| XXI | Siluhar or Cachax | $\begin{array}{llll}24 & 49 & 43\end{array}$ | $\begin{array}{llll}92 & 47 & 21\end{array}$ | $34 \quad 48$ | ＂ $0 \quad 57$ | －3692 |  |
| XXII | Dibrugarh | $27 \quad 2924$ | $9 \pm \quad 65 \quad 40$ | $39 \quad 36$ | ， 12 | $\cdot 3584$ |  |
| XXIII | Port Bleir | $\begin{array}{llll}11 & 39 & 10\end{array}$ | $\begin{array}{llll}92 & 43 & 13\end{array}$ |  | W． $0 \quad 15$ | －3963 |  |

Notr．－The above values of Dip，Deolination and Horizontal Force aro unoonected for secular cbange， djurval variation，instrumental differenoes，etc．，and are to be considered prelimiuary values only．

Where blonks occur，values have already beon found during previous ficld seasons，or the observations have nut been completed．

All Longitudes are referable to that of Madras Observatory taken at the value $80^{\circ} 144^{\prime} 54^{\prime \prime}$ East from Greenwich．

B．—Mean values of Magnetic Elements at Observatories during 1910.

| Obserwatorieg． | Latitade． | Longitude． | Dip． | fr oolination． | Horizantal Furees． | Vertioal Forso． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | －，＂ | －＊ | －， | －， |  |  |
| Debra Dan | 30 $19 \quad 19$ | $78 \quad 3 \quad 19$ | N． $48 \mathbf{5 4} 8$ | E $\mathbf{2 3 1} \mathbf{3}$ | －33257 | ． 32019 |
| Barruckpore | 22464 | $88 \quad 21 \quad 39$ | N． $3042 \cdot 2$ | E $065 \%$ | －37399 | 22108 |
| Toungoo | $\begin{array}{lll}18 & 65 & 24\end{array}$ | $\begin{array}{llll}96 & 27 & 3\end{array}$ | N． 2321 | F 4024.9 | －33801 | －16．49 |
| Koluikanul | $\begin{array}{llll}10 & 13 & 60\end{array}$ | $\begin{array}{llll}77 & 27 & 46\end{array}$ | N． 3452 | W $055 \%$ | 37，85 | $\cdot 02 \downarrow 59$ |


D.-Hourly Means of Horizontal Force in C. G. S. Units (Corrected for temperature) at Dehra Dūn from the seleeted quiet days in 1910.

Diurnal Inequality of the Horizontal Force at Dehra Dīn as deduced from the preceding Table.

| Houra. | мid. | 1 | ${ }^{2}$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Noon. | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | Mid. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Winter. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Moothe. | $\gamma$ | y | $\gamma$ | $r$ | $\gamma$ | $\gamma$ | $\gamma$ | $\gamma$ |
| January | -1 | -3 | -1 | -3 | -2 | -1 | +1 | +-5 | $+\theta$ | +8 | +4 | -1 | -1 | -1 | -2 | - 9 | 0 | $-3$ | 0 | 0 | -1 | -1 | -I | -2 | -1 |
| February | -6 | -4 | -7 | -3 | -3 | -3 | -1 | +1 | +1 | +5 | +5 | +6 | +10 | +13 | +10 | +5 | -3 | $-7$ | -4 | -5 | -4 | -5 | -2 | -3 | -3 |
| Marcin | -6 | -2 | -3 | -4 | -4 | -1 | -2 | -4 | -4 | 0 | +3 | +5 | +11 | +15 | +18 | +10 | + 4 | 0 | -3 | -5 | -5 | -7 | -5 | -4 | -1 |
| October | -6 | -5 | -7 | -6 | -4 | -6 | -6 | -7 | -8 | -8 | +2 | +6 | +12 | +18 | +13 | +7 | +4 | +1 | +1 | -2 | -2 | -2 | 0 | -1 | -2 |
| November | -7 | -8 | -2 | -3 | -4 | -3 | -1 | +3 | +6 | +9 | +7 | +11 | +14 | +10 | +5 | +2 | 0 | -2 | -5 | -5 | -6 | -4 | -4 | -6 | -6 |
| December | -6 | -5 | -6 | -6 | -6 | -2 | -1 | +2 | +5 | +2 | +4 | +13 | +10 | +7 | +5 | +3 | +5 | 0 | 0 | -4 | -7 | -1 | -10 | -3 | -4 |
| Neans | - $\theta$ | -5 | -5 | -4 | -4 | -3 | -2 | 0 | +1 | +2 | +4 | +6 | +9 | +10 | +8 | +4 | +1 | -2 | -2 | -4 | -4 | -4 | -4 | -3 | -3 |


| Su |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Delta$ pril | -4 | -s | -3 | -4 | -3 | -2 | -4 | -4 | -7 | -7 | -1 | +9 | +13 | +15 | +12 | +10 | +3 | 0 | -2 | -2 | -2 | -1 | +1 | +2 | +2 |
| May | -6 | -7 | -7 | -6 | -6 | -6 | -6 | -8 | -7 | -4 | +4 | +18 | +18 | +18 | +14 | +6 | 0 | -3 | -3 | -4 | -1 | -2 | -3 | -3 | 0 |
| June | 0 | -3 | 0 | 0 | -1 | 0 | +2 | -1 | -5 | -7 | -2 | + | + 7 | +12 | +11 | +8 | -1 | -4 | -5 | -8 | -5 | +2 | -3 | -1 | 0 |
| .tily | -1 | -3 | -2 | -2 | -4 | -2 | 0 | -2 | -3 | -3 | -1 | +4 | +10 | +12 | +12 | +8 | +2 | -2 | -4 | -4 | -3 | -1 | -2 | 0 | + 3 |
| August | -3 | 0 | 0 | -1 | 0 | +1 | +2 | 0 | -8 | -11 | -14 | -14 | -3 | +7 | +11 | +8 | +5 | 0 | +2 | +3 | +3 | +4 | +1 | +1 | +10 |
| Septemler | + | +5 | +1 | 0 | +2 | +2 | 0 | -7 | $-16$ | -19 | -16 | -12 | 0 | +5 | +8 | +11 | +9 | +8 | +4 | +3 | 0 | + | + 3 | +3 | + 7 |
| Heenn | -1 | -2 | -2 | -2 | -2 | -1 | -1 | -3 | -7 | -8 | -5 | +2 | + | +12 | +12 | +9 | +3 | 0 | -1 | -2 | -2 | +1 | 0 | +1 | + |


| 4.LE | 6.IE | 8.18 | L.IE | P.It | ¢.18 | F.IE | 9. 18 | 9.IE | 0.18 | 1.08 | 8.68 | 8.88 | 8.62 | 9.08 | ¢. 88 | 8.8¢ | 9.78 | 2.78 | \%.\&® | £.8¢ | 6. 68 | 8.86 | I. $¢$ | 1.68 | い.E6 | tres |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T.18 | F-TE | 8.18 | E.18 | 0.18 | 6.08 | 0.te | 1.78 | E.It | 0.te | 1.08 | I. 66 | 7.87 | 9.88 | 9. 66 | 8.IE | 6.88 | 6.88 | e.fe | ¢. 68 | 8.18 | 9.18 | 9.18 | 9.18 | E.IE | 9.IE | دequaylag |
| P-18 | 9-18 | 4.18 | 9.18 | ¢.t8 | \&.te | 2.18 | 8.16 | 6.08 | 8.08 | 7.6E | 986 | ع. 86 | 862 | 9.06 | 2.88 | 8.E¢ | \%. $\ddagger$ | 8.78 | \&.ge | 6.ze | 0.68 | 8.18 | $4.18{ }^{*}$ | 4.18 | 9.16 | $\mathrm{Tonsinv}^{\text {che }}$ |
| E.IE | \%.IE | I.IE | 0.te | 808 | L.08 | L.0E | 6.08 | 4.08 | 8.08 | 6.66 | 8. 68 | 0.68 | ¢. 67 | ¢.08 | 1.88 | T.88 | 9.ع€ | 0.88 | \&. 88 | 8. 68 | C. 68 | 6.IE | 6-18 | L.18 | 0.18 | 5108 |
| 8.IE | 8.18 | L-LE | 8.TE | ¢.IE | 9.te | 8.18 | 0.fe | 8.18 | 9.08 | 8.63 | 8.88 | 2.82 | 7.66 | 8.08 | ¢ 8 E | 2.FE | T.ce | I.ce | 4.6E | £.76 | F.E¢ | 8.78 | 8.\% | 8. 6 | L. $¢$ | - - juns |
| 6.68 | 9.6E | 9. 68 | I. 76 | 8.LE | 8.18 | 6.18 | T.78 | \%.¢ $¢$ | 8.18 | 1-18 | T.c¢ | E.6z | 8.67 | ¢.08 | \%.88 | 2.ts | 1.98 | 9.18 | 9.88 | 8.68 | 8.68 | 8.68 | 4.68 | 8.8 | ¢.f. | $\mathrm{sr}^{\text {r }}$ |
| ¢- $¢$ | 9.68 | 7.6: | 6. 68 | 0.88 | o.t¢ | 0.68 | 6.6\% | $0.8 ¢$ | L.IE | L.0E | 8.66 | 7.67 | \%08 | 9.TE | L.8E | 6.78 | 6.78 | 8.88 | 0.88 | ¢ 88 | 9.68 | L. $\%$ | L.78 | 2.8. | ¢.fe | $\mathrm{I}^{1+1} \mathbf{V}$ |

- demunn



$$
+\pi \cdot \pi
$$



Diurnal Inequality of the Deelination at Dehra Dün as deduced from the preceding Table.

| Hours. | Mid. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Noon. | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | Mid. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Winter. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Morths. | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , |
| Janasry | - $\div 0 \cdot 1$ | $0 \cdot 0$ | $0 \cdot 0$ | -0.1 | -0.1 | -0.3 | -0.4 | -0.3 | -0.1 | +0.9 | +13 | +1.1 | +0.1 | -0.2 | -0.2 | -0.3 | -0.3 | $+0.1$ | 0.0 | $0 \cdot 0$ | -0.1 | -01 | -0.1 | -0.1 | -0.2 |
| Febrasry | - +0.2 | +0.2 | +0.3 | +02 | +0.1 | -0.1 | -0.2 | -0.3 | +0.2 | $+0.6$ | +0.2 | $-0.3$ | -0.6 | -0.7 | -0.2 | +02 | +0.3 | +0.3 | $-0.2$ | -0.1 | 0.0 | +0.1 | $\pm 01$ | +0.1 | +0.2 |
| March | - 0 | -0.1 | -02 | -0.3 | -0.4 | -0.5 | -0.1 | $+1.0$ | +22 | $+2.5$ | +19 | $+0 \cdot i$ | -1.4 | -1.8 | $-1.5$ | -0.8 | -0.1 | $\pm 0.1$ | $-4.2$ | -0.3 | -0.2 | -0.1 | -0.2 | $-0.1$ | -0.1 |
| October | +0.4 | +0.6 | +0.8 | +0.3 | +0.1 | +0.5 | +0.4 | +1.2 | +1.8 | +1.4 | +0.2 | -0.6 | -1.9 | -2.4 | -200 | -0.7 | $+0.1$ | +0.2 | -0.2 | $-0.1$ | +01 | +0.1 | +0.1 | +0.2 | +0.4 |
| Norember | . +0.4 | +0.2 | -0.3 | $\rightarrow 0.3$ | $-0.6$ | -0.5 | -0.8 | -0.5 | +0.1 | $+0.5$ | +0.4 | +03 | -0.3 | -0.4 | -02 | +01 | $+0.1$ | 0 | +0.1 | +0.1 | $+0.1$ | +0.2 | +0.3 | +0.5 | +0.5 |
| December | . +02 | +0.1 | $0 \cdot 0$ | -0.2 | -0.2 | -0.5 | -0.6 | -0.7 | -0.2 | +0.6 | +0.5 | +0.1 | -0.1 | -0.4 | -0.3 | $+0.1$ | +0.2 | +0.4 | +0.3 | $+0 \cdot 2$ | +0.3 | +0.1 | $+0.5$ | +0.4 | +0.1 |
| Means | $+0.2$ | +0.2 | +0.1 | 0.0 | -0.2 | -0.2 | $-0.2$ | +0.1 | $+0.7$ | +1.1 | +0.8 | $-0.1$ | -0.7 | $-1.0$ | -0.7 | -0.2 | +0.1 | $+0.2$ | 0.0 | 0.0 | +0.1 | +0.1 | $+0^{\prime} 1$ | +0.2 | +0.2 |


Hourly Means of Vertical Foree in C. G. S. Units (Corrected for temperature) at Dehra Dün from the selecterd quiet days in 1910.

| Hoors. | mid. | 1 | 2 | 3 | 4 | 5 | ${ }^{6}$ | 7 | 8 | 9 | 10 | 11 | Noon. | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ${ }^{21}$ | 22 | ${ }^{23}$ | Mid. | Neanq. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\cdot 31900+$ Wister. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Months. | $\gamma$ | 7 | $\gamma$ | $\gamma$ | $\gamma$ | $\gamma$ | $\gamma$ | 7 | $\gamma$ | $\gamma$ | $\gamma$ | 7 | $\gamma$ | $\gamma$ | r | 7 | $\gamma$ | $\gamma$ | 7 | $\gamma$ | 7 | $\gamma$ | $\gamma$ | 7 | 7 | $\gamma$ |
| Janaary | 073 | 073 | 073 | 072 | 072 | 072 | 073 | 074 | 077 | 078 | 074 | 066 | 083 | 066 | 065 | 068 | 07\% | 074 | $0: 4$ | 074 | 074 | 075 | 075 | 075 | 175 | 672 |
| Febroary | 77 | 77 | 76 | 77 | 77 | 76 | 77 | 76 | 77 | 76 | 71 | 65 | 66 | 70 | 72 | 73 | 74 | 74 | 75 | 75 | 76 | 76 | 77 | 77 | 76 | 74 |
| Marcb | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 87 | 87 | 82 | 75 | 67 | 69 | 73 | 80 | 84 | 86 | 84 | 84 | 85 | 87 | 87 | 88 | 88 | 88 | 82 |
| October | 159 | 158 | 158 | 158 | 159 | 158 | 158 | 160 | 157 | 153 | 151 | 144 | 144 | 148 | 152 | 157 | 160 | 159 | 157 | 157 | 159 | 159 | 160 | 160 | 160 | 156 |
| Norember | 166 | 166 | 167 | 166 | 166 | 166 | 167 | 167 | 168 | 168 | 165 | 165 | 163 | 163 | 164 | 167 | 163 | 169 | 169 | 169 | 170 | 171 | 170 | 170 | 171 | 167 |
| December | 172 | 172 | 171 | 171 | 171 | 171 | 171 | 171 | 173 | 172 | 169 | 167 | 165 | 185 | 169 | 172 | 172 | 172 | 173 | 172 | 172 | 174 | 1\%2 | 174 | 174 | 171 |
| Меans | 122 | 122 | 122 | 122 | 122 | 121 | 122 | 123 | 123 | 122 | 118 | 112 | 112 | 114 | 117 | 1:0 | 122 | 122 | 122 | 123 | 123 | 124 | 124 | 124 | 124 | 120 |


Diurnal Inequality of the Ferlical Forec at Dehra Dün as dedwcel from the precering Table.

| Hля: | Ilid. | 1 | 3 | s | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Noon. | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | Mid. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wiuter. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Woathe. | $\gamma$ | 7 | $\gamma$ | $\boldsymbol{\gamma}$ | $\gamma$ | ${ }^{7}$ | ${ }^{\gamma}$ | Y | $\gamma$ |
| J•anuy - | +1 | +1 | +1 | 0 | 0 | 0 | +1 | +2 | +5 | +6 | +2 | --6 | -8 | -6 | -7 | -4 | 0 | +2 | +2 | +2 | +2 | +3 | +3 | +3 | +3 |
| Fehraary . | +3 | $\pm 3$ | +2 | +3 | +3 | +2 | +3 | +2 | +3 | +2 | -3 | - 0 | -8 | - | -2 | -1 | 0 | 0 | +1 | +1 | +3 | +2 | +3 | +3 | +2 |
| Marb | +2 | +2 | +2 | +2 | +2 | +2 | +2 | +5 | +5 | 0 | -7 | -15 | -13 | -9 | -2 | $+2$ | +4 | +2 | +2 | +3 | +5 | +5 | +6 | $+6$ | +6 |
| Octoler | +3 | +2 | +2 | +3 | +3 | +2 | +2 | +4 | +1 | -3 | -5 | -12 | -12 | -8 | -4 | +1 | + 1 | +3 | +1 | +1 | +3 | +3 | +4 | +4 | +4 |
| Novesber . | -1 | -1 | 0 | -1 | -1 | -1 | 0 | 0 | +1 | +1 | -2 | -2 | -4 | -4 | -3 | 0 | +1 | +2 | +2 | +2 | + 3 | +4 | +3 | +3 | +4 |
| December . | +1 | +1 | 0 | 0 | 0 | 0 | 0 | 0 | +2 | +1 | -2 | -4 | -6 | -6 | -2 | +1 | +1 | +1 | +2 | +1 | +1 | +3 | +1 | +3 | +3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| - Mreans | +2 | +2 | +2 | +2 | +2 | +1 | +2 | +3 | +3 | + | -2 | -8 | -8 | --6 | -3 | 0 | +2 | +2 | +2 | +2 | +3 | +4 | +4 | +4 | +4 |

\footnotetext{
Summer

| Apri' . | +3 | +2 | +2 | +2 | +2 | +1 | +4 | +6 | +5 | -2 | -10 | -15 | -16 | -13 | - | -1 | +2 | +4 | +3 | +3 | +3 | +4 | $+5$ | +5 | +5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| May . | +2 | +1 | +1 | 0 | +1 | +2 | +4 | +3 | 0 | -9 | -14 | -12 | -7 | -3 | +2 | +4 | +3 | +2 | +1 | +1 | +1 | +3 | +3 | + 4 | +4 |
| Jone - | +4 | +4 | +5 | +4 | +4 | +7 | +11 | +9 | +5 | -4 | -6 | -15 | -16 | - 15 | -11 | -5 | 0 | +6 | +4 | +2 | +4 | +5 | +4 | +3 | +4 |
| Joly . | +3 | +2 | +2 | +2 | +2 | +4 | +7 | +4 | +2 | -1 | -6 | -12 | -12 | -9 | -5 | -2 | 0 | +1 | +1 | 0 | +3 | +4, | +4 | +4 | +5 |
| Angust : | -4 | -3 | -3 | +0 | -2 | 0 | +1 | +1 | $-3$ | -9 | -14 | -12 | -13 | -10 | -6 | +1 | +4 | +8 | +11 | +12 | +13 | $+15$ | +15 | +15 | $+16$ |
| September . | +1 | 0 | 0 | 0 | +1 | 0 | +2 | +3 | +1 | -3 | -8 | -10 | -7 | -5 | -1 | +1 | +2 | +1 | 0 | +1 | +1 | +3 | +3 | +3 | +4 |
| Means | +1 | $+1$ | +1 | 0 | +1 | +2 | $+4$ | +4 | +1 | -5 | -10 | -13 | -12 | -10 | -5 | -1 | +1 | +3 | +3 | $+9$ | + 4 | + 5 | +5 | +5 | +6 |

Mourly Means of the Dip as determined at Dehra Dün from the selected quiet days in 1910.

| \#jars. | Mid. | 1 | 2 | 3 | ${ }^{4}$ | 5 | 6 | 7 | 6 | 9 | 10 | 11 | Noon. | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | ${ }^{23}$ | 23 | Mid. | Means. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N. $43^{+}$+ Winter. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Months. | , | , |  |  |  | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | . | , | , | , | , |
| Janaary | 52.1 | $52 \cdot 2$ | $52 \cdot 1$ | 52.1 | 52\%1 | 59.0 | 52.0 | 51.8 | 51.8 | $51 \cdot 9$ | $51 \cdot 9$ | 51.7 | 51.0 | 51.7 | 51.7 | 51.9 | 52.0 | 52.3 | 52.1 | 52.1 | 52.1 | 52.2 | 52.2 | $52 \cdot 2$ | 52.2 | 52.0 |
| February | $52 \cdot 7$ | 52.6 | 59.7 | $52 \cdot 5$ | 52.5 | 52.4 | 52.6 | $52 \cdot 2$ | $52 \cdot 3$ | 52.0 | 51.8 | 514 | 51.2 | $51 \cdot 3$ | 51.6 | 51.9 | 52.3 | 52.6 | 52.5 | 52.5 | '52.5 | 52.5 | 52.5 | 52.5 | 53.4 | 52.2 |
| Sarch | 52.8 | 52.6 | 55.6 | $52 \cdot 7$ | 52.7 | 52.5 | 526 | 52.8 | 52.8 | 52.4 | 51.8 | $51 \cdot 3$ | 51-1 | 51.1 | 51.4 | 52\% | $52 \cdot 4$ | 52.5 | 52.6 | 52.8 | 52.9 | 53.0 | 52.8 | $52 \cdot 9$ | 62.7 | 52.4 |
| Oetioter | 58.1 | 58.0 | 58.1 | 58.1 | 58.0 | 58.0 | 58.0 | $58 \cdot 2$ | 58.1 | 57.9 | $57 \cdot 3$ | 56.7 | $58 \cdot 4$ | 56.4 | 56.8 | 57.3 | 57.6 | 57.7 | 57.6 | 57.8 | 57.9 | 57.9 | 57.8 | $57 \cdot 9$ | 57.9 | 57.7 |
| Yoveinter | 584 | 58.4 | 582 | 58.2 | 58.2 | $58 \cdot 2$ | $58 \cdot 2$ | 58.0 | 57'8 | 57.7 | 57.6 | 57.4 | $57 \cdot 2$ | 57•4 | 57.7 | 58.0 | 58\% | 584 | 58.5 | 58.5 | $58 \cdot 6$ | 58.5 | 58.5 | $58 \cdot 6$ | 58.6 | 58.1 |
| Disemier | 58.1 | [54 4 | 58.4 | 54.4 | 58.4 | $58 \cdot 2$ | 58.1 | 58.0 | 57.9 | 58.0 | 57's | 57.2 | 57.2 | 57.4 | 57.7 | 58.0 | 57.9 | $58 \cdot 1$ | $58 \cdot 2$ | 58.4 | 58.5 | 58.3 | 58.7 | 58.4 | 58.4 | $58 \cdot 1$ |
| ${ }_{2}$ 2eaus $^{\text {a }}$ | 55.4 | 55.6 | 55.4 | 55\% | 55.3 | 55\%2 | $55 \cdot 2$ | 55.2 | 55.1 | 55.0 | 54.7 | 54.3 | 54.1 | 54.2 | 54.5 | 54,9 | 65.1 | 55\%3 | 55.3 | 55.4 | 554 | 55-4 | 55.4 | 55.4 | $55 \cdot 4$ | $55 \cdot 1$ |






> Diurnal Inequality of the Horizontal Force at Barrackipore'as deduced from the preceding Table.

| Ноars. | Mid. | 1 | 2 | 3 | 1 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Noon | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 23 | 23 | Mid. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## Wivter.



Sammer.


Hourly Means of the Declination as determined at Barrackpore from the selected quiet days in 1910.

| Hours. | Mid. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Noon. | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | . 21 | 22 | 23 | Mid. | Meang, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Monthes, | , | , | , | , | , | , | , | , | , | , | , | , |  | , | , | , | , | , | , | , | , | , | , | , | , |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Janamiy | 58.0 | 57.8 | 57.8 | 57.7 | 57.8 | 57.5 | $56 \cdot 3$ | 57.2 | 58.1 | 59.6 | $00 \cdot 4$ | 59.9 | $58 \cdot 4$ | 67.9 | 57.5 | 57'4 | $57 \cdot 7$ | 58.0 | 58.1 | 58.1 | 58.1 | 58.0 | 58.0 | 58.0 | 53.1 | $58 \cdot 1$ |
| Febraary | 577 | 577 | 578 | 577 | 577 | 67.5 | 57.2 | 57.3 | 57.8 | $58 \cdot 3$ | 57.9 | 57.4 | $57 \cdot 1$ | 57.6 | 57.7 | 58.0 | 58.2 | 57.8 | 57.3 | 57.5 | 57.6 | 57.5 | 57.6 | 57.6 | 677 | 57.6 |
| March | 57.2 | 57.3 | 57.1 | 57.1 | 57.0 | 569 | 57.0 | 58.1 | 593 | $58 \cdot 6$ | 58.9 | 57.4 | 56.5 | 56.1 | 56.7 | 57.4 | 57.8 | 57.6 | 57.0 | 57.0 | 57.0 | $57 \cdot 1$ | 57.2 | 57.2 | 57.2 | 57.4 |
| October | 54.0 | 54.0 | 54.0 | 54,2 | 54.0 | 53.7 | 54.0 | 55.1 | 55.7 | 55.3 | 544 | $53 \cdot 3$ | 523 | 52.0 | $52 \cdot 7$ | - 53.8 | 54.7 | 54.6 | 53.9 | 53.8 | $53 \cdot 9$ | 54.0 | 540 | 63.9 | 54.0 | 54.0 |
| November | 53.7 | 53.7 | $53 \%$ | 53.3 | 53.2 | 53.0 | $53 \cdot 1$ | 53.0 | $53 \cdot 5$ | 54.2 | 54,2 | $53 \cdot 6$ | 53.2 | $53 \cdot 3$ | 53.4 | $53 \cdot 6$ | 53.7 | 537 | 63.5 | 535 | 53.4 | 53.4 | 53.5 | 53.5 | 53.5 | 53.5 |
| December | 529 | $52 \cdot 9$ | 52.8 | 52.5 | 52.5 | 52.3 | $52 \cdot 2$ | 51.8 | 52.6 | 53.5 | 53.5 | 53-1 | 53.0 | 52.6 | 524 | 52.7 | $53 \cdot 2$ | 53.2 | 53.3 | 53.2 | 530 | 52.9 | 52.8 | 52.9 | 52.9 | 32.8 |
| Means | 55.6 | 55.6 | 55.5 | $55 \cdot 4$ | 55.4 | $55 \cdot 2$ | 55.1 | 55.4 | 56.2 | 58.8 | 56.6 | 55.8 | 55.1 | 54.9 | 55.1 | 55.5 | 55.9 | 65.8 | $55 \cdot 5$ | 55.5 | 55.5 | 55.5 | 55.5 | $55 \cdot 5$ | 55.6 | $55 \cdot 6$ |

Summer.

Diurnal Inequality of the Declination at Barrackpore as deduced from the preceding Table.

| Huars. | Nic. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Nood. | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | Mid. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Winter. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} 1910 . \\ \text { jonths. } \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | , |  |  | , |  | , | , |  |  |
| January | $-0 \cdot 1$ | -0-3 | $-0.3$ | -0.4 | -0.3 | $-0.6$ | -0.8 | $-0.9$ | 0.0 | +1.5 | +23 | +1.8 | $+0.3$ | -0.2 | -0.6 | -0.7 | -0.4 | -0.1 | 0.0 | $0 \cdot 0$ | 0.0 | $-0.1$ | -0.1 | -0.1 | $0 \cdot 0$ |
| Febraary | $+0 \cdot 1$ | $+0.1$ | +0.2 | +0.1 | +0.1 | -0.1 | -0.4 | $-0.3$ | +0.2 | $+0.7$ | +0.3 | $-0.2$ | -0.5 | 0.0 | $+0.1$ | $+0.4$ | $+1.6$ | $+0.2$ | $-03$ | $-0.1$ | 0.0 | $-0.1$ | 0.0 | 0.0 | $+0.1$ |
| Manh | -0.2 | -0.1 | -0.3 | -0.3 | -0.4 | -0.5 | -0.4 | +0.7 | +1.9 | +2.2 | +1'5 | 0.0 | -0.9 | $-1.3$ | $-0.7$ | $0 \cdot 0$ | +0.4 | $+0 \cdot 2$ | -0.4 | $-0.4$ | -0.4 | $-0.3$ | -0.2 | -0.2 | $-0.2$ |
| Oitober | $00^{\circ} 0$ | 00 | 0.0 | +0.2 | 0.0 | -0.3 | 00 | $+1.1$ | +1.7 | $+1 \cdot 3$ | +0.4 | $-0.7$ | $-1.7$ | $-2.0$ | -13 | $-0.2$ | $+0.7$ | +0.6 | $-0.1$ | -0.2 | -0.1 | $0 \cdot 0$ | $0 \cdot 0$ | $-0.1$ | 0.0 |
| Norember | $+0 \cdot 2$ | +0:2 | $0 \cdot 0$ | -0.2 | -0.3 | -0.5 | -0.4 | -0.5 | 0.0 | +0.7 | $+0.7$ | +0.1 | -0.3 | -0.2 | -0.1 | +0.1 | $+0.2$ | +0.2 | 0.0 | $0 \cdot 0$ | -0.1 | -0.1 | 0.0 | $0 \cdot 0$ | 0.0 |
| December | +0.1 | +0.1 | 0.0 | -0.3 | -0.3 | -0.5 | -0.6 | $-0.0$ | -0.2 | +0.7 | +0.7 | +0.3 | +0.2 | -0.2 | -0.4 | -0.1 | $+0.4$ | +0.4 | +0.5 | $+0.4$ | $+0.2$ | $+0.1$ | 0.0 | +0.1 | +0.1 |
| Means | 0.0 |  | -0.1 |  | -0.2 | -0.4 | -0.5 | -0.2 | +0.6 | +1:2 | +10 | +0.2 | -0.E | -0.7 | -0.5 | $-0.1$ | $+0 \cdot 3$ | $+0.2$ | -0.1 | $-0 \cdot 1$ | --0.1 | -0.1 | -0.1 | -0.1 | 0.0 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


V́l．II．］MAGNETIC SURVEY．
Hourly Means of Vertical Force in C．G．S．Units（Corrected for temperature）at Barrackpore from the selected quiet days in 1910.

| Hours． | wid． | 1 | 2 | 3 |  | 5 | 6 | 7 | 8 | 9 | 10 | 11 | N oon． | 13 | 14 | 15 | 16 | 17 | ${ }^{18}$ | 19 | 20 | ${ }^{21}$ | 22 | ${ }^{29}$ | mid． | Meane． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $22000+$ Winte |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Months． | $\gamma$ | $\gamma$ | $\gamma$ | ${ }^{7}$ | $\gamma$ | 4 | $\gamma$ | $\gamma$ |
| January | 137 | 138 | 138 | 138 | 138 | 138 | 138 | 139 | 141 | 138 | 133 | 125 | 123 | 121 | 119 | 124 | 128 | 132 | 134 | 134 | 135 | 135 | 136 | 136 | 136 | 133 |
| February | 143 | 143 | 143 | 144 | 143 | 144 | 144 | 148 | 146 | 140 | 137 | 135 | 135 | 134 | 136 | 138 | 138 | 139 | 141 | 142 | 142 | 142 | 143 | 142 | 142 | 141 |
| March | 147 | 147 | 149 | 149 | 149 | 149 | 149 | 150 | 146 | 140 | 134 | 130 | 131 | 132 | 136 | 140 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 148 | 148 | 143 |
| October | 190 | 191 | 190 | 190 | 189 | 190 | 191 | 181 | 189 | 185 | 183 | 180 | 178 | 182 | 185 | 187 | 188 | 187 | 188 | 188 | 188 | 187 | 187 | 188 | 187 | 187 |
| November | 199 | 199 | 198 | 199 | 199 | 200 | 199 | 200 | 198 | 195 | 192 | 189 | 191 | 192 | 192 | 193 | 19.4 | 195 | 197 | 198 | 197 | 1.9 | 197 | 197 | 197 | 196 |
| December | 196 | 136 | $1: 6$ | 197 | 196 | 197 | 197 | 198 | 200 | 197 | 193 | 191 | 187 | 184 | 185 | 187 | 190 | 192 | 193 | 193 | 191 | 194 | 195 | 194 | 195 | 193 |
| $\mathrm{Me}_{\text {eans }}$ | 169 | 169 | 169 | 170 | 169 | 170 | 170 | 171 | 170 | 166 | 162 | 158 | 158 | 158 | 169 | 162 | 163 | 165 | 166 | 167 | 167 | 167. | 168 | 168 | 168 | 166 |


|  | 욱 |
| :---: | :---: |
| 哭 | $\stackrel{\rightharpoonup}{\square}$ |
|  | 를 |
|  | 艾 |
|  | $\stackrel{9}{3}$ |
| 茴 | $\stackrel{\square}{-1}$ |
|  | Nㅡㄴ |
| 吕 吕 | 可 |
| 号 吕 | E |
| 吕 号 | $\stackrel{8}{9}$ |
| 古 志 兌 吕皿总 | ： |
|  | 魚 |
| 牙 | $\stackrel{\square}{\square}$ |
| 咨 | 茍 |
|  | $\stackrel{\square}{9}$ |
|  | 先 |
| 我 | $\stackrel{\square}{\square}$ |
|  | $\stackrel{\square}{\square}$ |
|  | $\stackrel{\infty}{\square}$ |
|  | $\stackrel{\sim}{\square}$ |
| 苟 | ¢ |
| 号 | $\stackrel{9}{9}$ |
| 吕 | $\stackrel{\%}{7}$ |
| 总 | $\stackrel{\square}{7}$ |
| 号总总 | $\stackrel{\square}{4}$ |
|  | $\stackrel{\square}{8}$ |
|  | 㳫 |

Dinrnal Inequality of the Pertical Force at Barrackporc as deduced from the preceding Table.

| Hears. | Mid. | 1 | 2 | 5 | 4 | 5 | ¢ | 7 | 8 | 9 | 16 | 11 | Noon. | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | Mid. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - Winter. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Months. | $\gamma$ | $\gamma$ | $\boldsymbol{\gamma}$ | ${ }^{\gamma}$ | 7 | $\boldsymbol{\gamma}$ | $\gamma$ | 7 | $\gamma$ | ${ }^{\gamma}$ | $\gamma$ | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | $\gamma$ | 7 | $\gamma$ |
| Josuary | +4 | +5 | +5 | +5 | $+5$ | +5 | +5 | +6 | +8 | +5 | 0 | -8 | --10 | -12 | -14 | -9 | -5 | -1 | +1 | +1 | +2 | +2 | +3 | +3 | +3 |
| Febrasry | +2 | +2 | +2 | +3 | +2 | +3 | +3 | +5 | +5 | -1 | -4 | -6 | -6 | -7 | -5 | -3 | -3 | -2 | 0 | +1 | +1 | +1 | +2 | +1 | +1 |
| March | +4 | +4 | +6 | +6 | +6 | +6 | +6 | +7 | +3 | -3 | -9 | -13 | $-12$ | -11 | -7 | -3 | -1 | 0 | +1 | +2 | +3 | +4 | +5 | $+5$ | +5 |
| Oituber | +3 | +4 | +3 | +3 | +2 | +3 | +4 | +4 | +2 | -2 | -4 | $-7$ | -8 | -5 | -2 | 0 | +1 | 0 | +1 | +1 | +1 | 0 | 0 | +1 | 0 |
| Norember | +3 | +3 | +2 | +3 | +3 | +4 | +3 | +4 | +2 | -1 | -4 | -7 | -5 | -4 | -4 | -3 | -2 | -1 | +1 | +2 | +1 | +1 | +1 | +1 | +1 |
| December | +3 | +3 | +3 | +4 | +3 | +4 | +4 | $+5$ | +7 | + 6 | 0 |  | -6 | -9 | -8 | -6 | -3 | -1 | 0 | 0 | +1 | +1 | +2 | +1 | +2 |
| - Mieans | +3 | +3 | +3 | +4 | +3 | +4 | +4 | +5 | +4 | 0 |  | -8 | -8 | -8 | -7 | -4 | -3 | -1 | 0 | +1 | +1 | $+1$ | +2 | +2 | +2 |
|  |  |  |  |  |  |  |  |  |  |  | Sum | mer. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| April | +2 | +2 | +3 | +3 | +3 | +4 | + ${ }^{\text {\% }}$ | +5 | +3 | -5 | -10 | -13 | -11 | -6 | -2 | +1 | +3 | +3 | +3 | +4 | +3 | +4 | +5 | + 6 | +5 |
| May | +2 | +2 | +2 | +2 | +2 | +2 | +4 | 0 | -5 | -8 | $-7$ | -6 | -3 | - 2 | 0 | 0 | +1 | +1 | +1 | +1 | +2 | +1 | +2 | +2 | +2 |
| June . | $+2$ | $+2$ | +2 | +2 | +3 | + | +8 | $+4$ | 0 | -2 | -6 | -12 | -9 | -6 | -3 | -2 | -1 | -1 | $-1$ | +1 | +3 | +3 | +4 | +3 | +4 |
| Jaiy - . | +3 | +3 | +3 | +3 | +2 | +3 | +4 | +2 | -1 | -3 | -7 | -8 | -8 | -6 | -4 | -3 | -1 | 0 | +2 | +2 | +4 | +3 | + ${ }^{+}$ | +4 | +4 |
| Augast | +4 | +4 | +3 | +3 | +3 | +5 | +6 | +3 | -1 | -8 | -10 | -11 | -12 | -7 | -4 | $-1$ | +1 | +2 | +2 | +3 | +4 | +5 | +6 | +6 | +5 |
| Septembor | +4 | +4 | +3 | +3 | +3 | +3 | +5 | +2 | -3 | -5 | -9 |  | -7 | -4 | -2 | -1 | 0 | 0 | 0 | +3 | +3 | +4 | +4 | +4 | +3 |
| Meana | +3 | +3 | +3 | +3 | +3 | +3 | +5 | +3 | -1 | -6 | -8 | $-10$ | -8 | -5 | -3 | -1 | 0 | +1 | +1 | +2 | +3 | +3 | +4 | +4 | +4 |

Hourly Means of the Dip as determined at Barrackpore from the selected quiet days in 1910.


Winter.

| 3ronths. | , | , | , | , | , | , |  | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , | , |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jaxuary | 40.8 | $40 \cdot 8$ | 40.8 | 40.8 | 40.8 | $40 \cdot 8$ | 40.7 | $40 \cdot 6$ | 40.5 | $40 \cdot 2$ | $39 \cdot 9$ | $39 \cdot 4$ | $39 \cdot 3$ | 39.2 | $39 \cdot 2$ | 39.7 | 40.0 | $40 \cdot 4$ | $40 \cdot 6$ | $40 \cdot 6$ | 40.7 | $40 \cdot 7$ | $40 \cdot 8$ | $40 \cdot 7$ | $40 \cdot 7$ | $40 \cdot 3$ |
| February | 41.4 | 41.4 | 41.3 | 41.5 | 41.2 | 41.2 | 41.2 | 41.1 | 41.0 | $40 \cdot 5$ | 40.0 | $39 \cdot 8$ | 30.7 | 39.8 | 40-1 | 40.5 | 40.7 | 41-1 | 41.2 | 41.2 | 41.3 | 41.3 | 41.4 | 41-2 | 41.2 | 409 |
| March | 41.4 | $41 \cdot 4$ | 41.4 | 41.4 | $41 \cdot 4$ | $41 \cdot 4$ | $41 \cdot 3$ | 41.4 | 41.0 | $40^{-2}$ | 394 | $38 \cdot 9$ | $39 \cdot 1$ | $39 \cdot 3$ | $39 \cdot 7$ | 40.2 | 40.7 | $40 \cdot 9$ | 41.1 | $41 \cdot 3$ | 41.5 | 41.5 | 41.6 | 41.6 | 41.5 | 40.8 |
| Octoter | 44.3 | $44 \cdot 2$ | 44.2 | 44.2 | 44.2 | $44 \cdot 1$ | 44.2 | $44 \cdot 2$ | 44.0 | 43.5 | 43.0 | 42.4 | 42.2 | $42 \cdot 3$ | $42 \cdot 8$ | 43.4 | 43.7 | $43 \cdot 6$ | 43.7 | 43.8 | 43.9 | 43.8 | 43.8 | 438 | 43.7 | 436 |
| Novetmber | $44 \cdot 8$ | 417 | 44.7 | 44.6 | 44.5 | $4{ }^{\prime} 3$ | 44:5 | 443 | 460 | 43.6 | 431 | 42.8 | 42.8 | 43.2 | 435 | 43.8 | 440 | $44 \cdot 1$ | 44.3 | 44.6 | 44.5 | 446 | 44.4 | 44.4 | 44.4 | $44 \cdot 1$ |
| Deceraber | $44 \cdot 1$ | 44.0 | 44.0 | 44.0 | 44.0 | 44.0 | 43.9 | 43.8 | 43.8 | $43 \cdot 4$ | 43.2 | 42.7 | $42 \cdot 1$ | $42 \cdot 3$ | 42.4 | 42.8 | $43 \cdot 1$ | 43.4 | 43.6 | 43.7 | 43.9 | 440 | 43.9 | 44.0 | $43 \cdot 8$ | 43.5 |
| ijeans | $42 \cdot 8$ | $42 \cdot 8$ | 42.7 | $42 \cdot 8$ | 427 | 427 | $42 \cdot 6$ | 426 | $42 \cdot 4$ | 41.9 | 41•1 | 41.0 | $40 \cdot 9$ | 41.0 | 41.3 | 41.7 | 42.0 | 42.3 | $43 \cdot 4$ | 42.5 | $42 \cdot 6$ | $42 \cdot 7$ | 427 | $42 \cdot 6$ | 42.6 | 42-2 |

Bummer.

| April | $42 \cdot 1$ | 42.0 | 421 | $42 \cdot 1$ | $42 \cdot 1$ | 421 | 423 | $42 \cdot 4$ | 421 | $41 \cdot 2$ | $40^{\circ} 4$ | 399 | $38 \cdot 8$ | $40 \cdot 1$ | 40.8 | 41-4 | 41.7 | 41.9 | 42.0 | $42 \cdot 2$ | $4 \because \cdot 1$ | 42.2 | $42 \cdot 2$ | 42•2 | $42 \cdot 1$ | $41 \cdot 6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3\% ${ }^{\text {S }}$ | 42.5 | $42 \cdot 4$ | 42'4 | 423 | 423 | 423 | 424 | $4 \because 1$ | 41.5 | 409 | 40.7 | $40 \cdot 6$ | 409 | 41.0 | 41.5 | 417 | $42 \cdot 1$ | $42 \cdot 3$ | 42•2 | $42 \cdot 3$ | 42.4 | $42 \cdot 3$ | 423 | 423 | 423 | $41 \cdot 9$ |
| June | 425 | $42 \cdot 4$ | 425 | $42 \cdot 1$ | $48 \cdot 4$ | 42.4. | 42.6 | 42.4 | 4:2 2 | 41\% | $4 \mathrm{I} \cdot 1$ | $40 \cdot 6$ | 40.8 | 41.0 | $41 \cdot 4$ | 41.7 | 421 | $42 \cdot 6$ | 42.7 | $42 \cdot 8$ | 42.8 | 42.8 | $42 \cdot 8$ | 42.7 | 427 | 42.1 |
| Jait | 42.5 | 424 | 425 | 424 | $42 \cdot 4$ | $42 \cdot 4$ | $42 \cdot 4$ | 42.0 | 41.8 | 415 | 41.0 | $40 \cdot 7$ | $40 \cdot 6$ | $40 \cdot 8$ | 41•1 | 415 | 41.9 | 42.2 | 42.5 | $42 \cdot 4$ | $48 \cdot 6$ | 42.5 | 427 | 49-4. | $42 \cdot 4$ | 42.0 |
| August | 43.5 | $43 \cdot 6$ | $\overline{4} 3.4$ | 43.4 | 43•1 | 435 | $43 \%$ | 43.2 | $42 \cdot 8$ | $42 \cdot 2$ | 419 | 41.7 | 41.2 | 41.4 | $41 \cdot 8$ | $42 \cdot 3$ | $42 \cdot 6$ | $43 \cdot 1$ | $43 \cdot 2$ | $43 \cdot 3$ | 43.3 | $43 \cdot 4$ | 43.5 | $43 \cdot 6$ | $43 \cdot 5$ | $42 \cdot 9$ |
| sotember | 43.4 | $43 \cdot 3$ | $43 \cdot 3$ | 43.3 | $43 \cdot 3$ | 43.2 | 43.3 | 43.3 | 432 | 431 | 426 | $42 \cdot 3$ | 42.5 | 42.4 | 42. 5 | $42 \cdot 6$ | $42 \cdot 7$ | 42.8 | 42.9 | 43.2 | 43.3 | 43.4 | 43.4 | 43.3 | 493 | 480 |
| 3t..n. | 428 | $12 \%$ | 427 | 42.7 | 42.7 | 42.7 | 427 | 42'6 | $40 \cdot 3$ | 41.8 | 413 | 410 | 41.0 | $41 \cdot 1$ | $41 \%$ | 419 | 42.2 | 42.5 | 4.26 | 42.7 | $42 \cdot 8$ | . 12.8 | $42 \cdot 8$ | 42.8 | 427 | $42 \cdot 3$ |

Diurnal Inequality of the Dip at Barrackpore as deduced from the preceding Table.

| Huurs | Mid. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Noou. | 13 | I4 | 15 | 16 | 17 | 18 | 19 | 20 |  | 22 | 23 | Mid. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Winter. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | , | , | , | , |  |  |  |  |  |  | , |  | , | , |  |  |  | , | , |  | , | , | , | , |
| Months. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| January | +0.5 | + $1 \cdot 5$ | $+0.5$ | +0.6 | +0.5 | +0.5 | +0.4 | +0.3 | +0.2 | -0.1 | -0.4 | -0.9 | $-1.0$ | -1.1 | $-1.1$ | -0.6 | $-0.3$ | $+0 \cdot 1$ | +0.3 | +0.3 | $+0.4$ | $+0.4$ | $\pm 0.5$ | +0.4 | +0.4 |
| February | +0.3 | +0.5 | +04 | +0.6 | +0.3 | +0.3 | +0.3 | +0.2 | +0.1 | -0.4 | -0.9 | $-1.1$ | $-12$ | $-1 \cdot 1$ | -0.8 | $-0.4$ | $-0.2$ | $+0.2$ | $+0.3$ | $+0.3$ | $+0.4$ | +0.4 | $+0.5$ | +03 | $+0.3$ |
| March . | +0.6 | +0.6 | +0.6 | +06 | +0.6 | +06 | +0.5 | +0.6 | +0.2 | -0.6 | $-1.4$ | -1.9 | $-1.7$ | $-1.5$ | -11 | -0.6 | $-0.1$ | +0.1 | +03 | +0.5 | +0.7 | +0.7 | $+0.8$ | +0.8 | $+0.7$ |
| Ostober | +077 | $+0.6$ | +0.6 | +0.6 | +0.6 | +05 | +0.6 | +06 | +0.4 | $-0.1$ | -0.6 | $-1 \cdot 2$ | $-1.4$ | -1.3 | -0.8 | -0.2 | $+0.1$ | $0 \cdot 0$ | $+0 \cdot 1$ | +0.2 | +0.3 | +02 | $+0 \cdot 2$ | $+0 \cdot 2$ | +0.1 |
| Norember |  | +0.6 | +0.6 | +0.5 | +0.4 | $+05$ | +0\% | +0.2 | -0.1 | -0.5 | $-1.0$ | -1.3 | -13 | -0.9 | $-0.6$ | -0.3 | -0.1 |  | +0.8 | +0.5 | $+04$ | +0.5 | +0.3 | +0.3 | $+0 \cdot 3$ |
| December | +0.6 | +0.5 | +0.5 | +C. 5 | +0.5 | +0.5 | +0.4 | $+0.3$ | +03 | -0.1 | -03 | -0.8 | -1.1 | $-1.2$ | -1/1 | -0.7 | -0.4 | $-0.1$ | +0.1 | +0.2 | +0.4 | $+0.6$ | +0.4 | +0.5 | $+0 \cdot 3$ |
| - MFans | +0.8 | +06 | +0.5 | +0.6 | +0.5 | +0.5 | +0.4 | +0.4 | +0.2 | -0.3 | -0.8 | $-1 \cdot 2$ | $-1.3$ | -1-2 | $-0.8$ | -0.5 | -0.2 | $1+0.1$ | +0.2 | $+0.3$ | +04 | +0.5 | +0.5 | +0.4 | $+0 \cdot 4$ |
| Summer. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| April | +0.5 | +0.4 | +0.5 | +0.5 | +0.5 | +0.5 | +0.6 | +0.8 | +0.5 | -0.4 | -12 | $-17$ | $-1.8$ | $-1 \cdot 5$ | -0.8 | -02 | +0.1 | $+0.3$ | +0.4 | +0.6 | $+0.5$ | +0.6 | +0.6 | +0.6 | $+0.5$ |
| Maj | +0.6 | +05 | +0.5 | $+0.4$ | $+0.4$ | +0.4 | +0.5 | $+0.2$ | -0.4 | $-1 \cdot 0$ | $-1 \cdot 2$ | $-1.3$ | -10 | -0.9 | -0.4 | -0.2 | $+0.2$ | $+0.4$ | +0.3 | +0.4 | +0.5 | +0.4 | +0.4 | + 0.4 | $+0.4$ |
| June | +0.4 | +03 | +0\%4 | +0.3 | +0.3 | +0.3 | +0.5 | +0.3 | +0.1 | -0.4 | -1.0 | $-1.5$ | $-1 \cdot 3$ | $-1 \cdot 1$ | $-0.7$ | -0.4 | 0.0 | +0: | +0.6 | $+0.7$ | $+0.8$ | +0.7 | +0.7 | +0.6 | $+0.6$ |
| July | +0.5 | +0.4 | +0 5 | +0.4 | +0.4 | +0.4 | +0.4 | +0.0 | -0.2 | -0.5 | $-1.0$ | -13 | -1.4 | $-1.2$ | -0.9 | -0.5 | $-0.1$ | $+0.2$ | +0.5 | +0.4 | +0.6 | +0.5 | +0.5 | +0.4 | $+0.4$ |
|  | +0.6 | +0.7 | +0.5 | +0.5 | +0.5 | +0.6 | +05 | +0.3 | -0.1 | -0.7 | $-1.0$ | -1.2 | -17 | -1.5 | -1.1 | -0.6 | -0.3 | $+0.2$ | +0.3 | +0.4 | +0.4 | +0.5 | +0.6 | +0.7 | +06 |
|  | +0.6 +0.4 | +07 +0.3 | +0.5 +0.3 | +05 +0.3 | +0.5 +0.3 | +0.2 |  | +0.3 | +0.2 | $+0 \cdot 1$ | -04 | -0.7 | -0.5 | -0.6 | -0.5 | -0.4 | -03 | $-0.2$ | -0.1 | +0.2 | $+0.3$ | +0.4 | +04 | + 0.3 | +0.3 |
| September | +0.4 | +0.3 | $+0.3$ | +03 | +03 | +02 | $+03$ | +03 | +02 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Мевдs | +0.5 | +0.4 | +0.4 | +04 | $+0.4$ | +0.4 | +0.4 | $+0.3$ | 0.0 | -0.5 | -1.0 | $-1.3$ | $-1.3$ | $-1.2$ | -08 | -0.4 | -0.1 | $+0.2$ | $+0.3$ | +0.4 | $+0.5$ | +0.5 | +0.5 | +0.5 | +0.4 |

F.- Hourly Means of Horizontal Force in C. G. S. Uuits (Corrected for temperature) at Toungoo from the selected quiet days in 1910

| Hoorrs. | wid. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Noon | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ${ }^{21}$ | 22 | 23 | Mid. | Means. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 38000 Winter. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Months. | $\gamma$ | ${ }^{7}$ | $\gamma$ |
| January | 772 | 775 | 773 | 775 | 774 | 775 | 777 | 781 | 787 | 793 | 798 | 798 | 798 | 795 | 793 | 787 | 780 | 777 | 776 | 776 | 776 | 776 | 775 | 776 | 776 | 783 |
| Febraary | 773 | 774 | 774 | 773 | 776 | 778 | 779 | 783 | 791 | 798 | 80ı | 803 | 805 | 801 | 794 | 786 | 780 | 774 | 773 | 777 | 776 | 774 | 775 | 777 | 776 | 783 |
| March | 786 | 782 | 783 | 787 | 787 | 785 | 787 | 788 | 796 | 807 | 819 | 825 | 822 | 814 | 805 | 796 | 788 | 787 | 787 | 786 | 783 | 781 | 780 | 781 | 781 | 793 |
| October | 787 | 788 | 791 | 788 | 790 | 791 | 789 | 789 | 794 | 806 | 815 | 824 | 826 | 824 | 814 | 803 | 796 | 796 | 796 | 798 | 794 | 795 | 796 | 797 | 797 | 799 |
| November | 802 | 804 | 807 | 808 | 809 | 809 | 811 | '816 | 822 | 828 | 835 | 839 | 837 | 832 | 822 | 817 | 813 | 810 | 808 | 805 | 803 | 804 | 807 | 810 | 806 | 815 |
| December | 823 | 822 | 824 | 824 | 825 | 825 | 827 | 832 | 836 | 8.41 | 847 | 854 | 858 | 851 | 846 | 843 | 839 | 838 | 831 | 823 | $8: 6$ | 623 | 824 | 823 | 830 | 834 |
| Means | 791 | 791 | 792 | 793 | 794 | 794 | 795 | 798 | 804 | 812 | 820 | 824 | 825 | 820 | 812 | 805 | 799 | 797 | 795 | 795 | 793 | 792 | 793 | 794 | 794 | 601 |



| Uura | Mid. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Noon. | 13 | 14 | 15 | 16 | 7 | 18 | 19 | 20. | 21 | 22 | 23 | Mid. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Winter.


Summer.

| Aprii . | - | -11 | -10 | $-10$ | -8 | -9 | -9 | -8 | -10 | --6 | +11 | +26 | +33 | +32 | +27 | +16 | +3 | -3 -7 | $-7$ | -8 | -8 | -9 | -8 | -6 | -6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Suy | - - | -11 | -10 | $-10$ | -8 | -7 | -6 | -7 | -4 | +3 | +16 | +25 | +26 | +25 | $+17$ | $+9$ | +2 | $-7 \quad-11$ | -8 | -6 | -7 | -6 | -6 | -7 | -6 |
| Jime - | ; . | $-4$ | -6 | -6 | -6 | -4 | -5 | -3 | -4 | +1 | +9 | +20 | +26 | +27 | +23 | +15 | +6 | $-4 \quad-14$ | -16 | -12 | $-15$ | -13 | -7 | -9 | -6 |
| July | - - | -9 | -9 | -8 | $-7$ | -8 | -6 | -5 | 0 | +4 | +10 | +17 | + 21 | +22 | +20 | +13 | +4 | -3 -9 | -10 | -8 | -8 | -8 | -6 | -6 | - |
| August | - - | $-12$ | $-13$ | -13 | -18 | -12 | -11 | -8 | -4 | 0 | $+7$ | +16 | +26 | +25 | +24 | +19 | +12 | +4-3 | -9 | -6 | -5 | -4 | -4 | -6 | -8 |
| Sertisyer | - | -4 | -2 | +2 | -3 | -4 | -2 | -2 | -4 | -6 | -1 | +2 | $+8$ | +4 | $+9$ | +9 | +5 | +4, -2 | 0 | -1 | -3 | -4 | -4 | -2 | -1 |
| Mans | - | -8 | -9 | -8 | -8 | -8 | -7 | -6 | -5 | -1 | +8 | +17 | +23 | +22 | +20 | +13 | +5 | -2 -8 | -9 | -7 | -8 | -8 | -8 | -6 | -6* |

Hourly Means of the Declination as determined at Toungio from the selected quiet days in 1910. .

## $\mathbf{E} 0^{\circ}+\quad$ Winter.

| Monthe. | , |  |  | , | ' | , | , | , | , | , | , | , |  | , | , | , | , | , |  |  | - |  | , | , | , | , |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Janiary | 27.3 | 2:2 | $27 \cdot 2$ | 27.0 | 27.0 | 26.9 | 26.6 | 2 e 5 | $27 \cdot 2$ | $28 \cdot 4$ | 29.2 | $28 \cdot 9$ | 28.0 | 27.4 | 26.8 | 26.4 | 27.0 | 27.3 | 27-4 | 27-4 | 27.3 | $27 \cdot 3$ |
| February | 26.8 | 21:9 | 27.0 | 27.0 | 269 | 26.7 | 28.4 | 26.5 | 26.9 | 27.3 | 27.2 | 27.0 | 26.6 | 26.8 | 26.9 | $27 \cdot 2$ | 27.3 | 27.0 | 26.7 | 26.9 | 27.0 | $26 \cdot 9$ | $26 \cdot 9$ | 26.8 | 26.9 | 26.9 |
| March | $20 \cdot 5$ | 236 | 26.8 | 26.3 | 26.2 | 281 | 26.2 | 27.2 | 28.1 | $28 \cdot 4$ | 27.9 | 27.0 | $26 \cdot 2$ | 25.8 | 25.9 | 26.5 | 26.8 | 26.8 | $26 \cdot 4$ | 26.4 | 26.4 | 26-4 | $26 \cdot 4$ | 26.5 | 26.5 | 26.6 |
| Octuber | 23.3 | 233 | 23.3 | 23.4 | $23 \cdot 2$ | 23.1 | 23.4 | $24 \cdot 3$ | 24.7 | 24.6 | 241 | 23.7 | 29.8 | 22.0 | 22.4 | 23.2 | $24 \cdot 1$ | 24.0 | 23.1 | $23 \cdot 1$ | $23 \cdot 2$ | $23 \cdot 3$ | $23 \cdot 2$ | 23.2 | $23 \cdot 2$ | 23.4 |
| Norem'er | 23.0 | 230 | 23.2 | 22.9 | 299 | 22.7 | $22 \cdot 6$ | $22 \cdot 5$ | 23.0 | $23 \cdot 3$ | $23 \cdot 4$ | 23.1 | $22 \cdot 7$ | 29.8 | $22 \cdot 8$ | 22.8 | $22 \cdot 9$ | $22 \cdot 9$ | $22 \cdot 9$ | 23.0 | $22 \cdot 9$ | 22.7 | 22.7 | 22.7 | $22 \cdot 9$ | $22 \cdot 9$ |
| Decoulder | 22.3 | 23-3 | 22.2 | $22 \cdot 1$ | 22-1 | 21.9 | 21.7 | 21.5 | 22.1 | 22.9 | 23.0 | $22 \cdot 9$ | 22.6 | $22 \cdot 3$ | 22.1 | $22 \cdot 3$ | $22 \cdot 6$ | 22.8 | 22.6 | 22.6 | 22.4 | $22 \cdot 4$ | $22 \cdot 3$ | $22 \cdot 3$ | 22-4 | $22 \cdot 3$ |
| Sreans | 24.9 | $2+3$ | 24.9 | $24 \cdot 8$ | 24.7 | 24.6 | 24.5 | 24.8 | $25 \cdot 3$ | $25 \cdot B$ | 25.8 | 25.4 | 24.8 | 21.5 | 24.5 | 24.7 | $25 \cdot 1$ | 251 | 24.9 | 24.9 | 24.9 | 24.8 | 24-8 | 24.8 | 24.9 | $24 \cdot 9$ |

Summer.

| Aprid | 260 | 262 | 26-2 | 26.1 | 26.1 | $26 \cdot 0$ | 26.4 | $27 \cdot 4$ | $27 \cdot 7$ | 27.4 | 26.4 | $25 \cdot 1$ | $24 \cdot 3$ | 24.2 | 24.5 | $25 \cdot 2$ | $25 \cdot 6$ | 261 | $25 \cdot 9$ | 25•8 | $25 \cdot 6$ | 25.6 | $25 \cdot 7$ | 25.8 | 26.0 | $25 \cdot 9$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mey | 25.6 | $25 \cdot 8$ | 20.0 | $25 \cdot 9$ | $25 \cdot 8$ | $25 \cdot 9$ | 26.7 | 27.5 | $27 \cdot 6$ | $26 \cdot 9$ | $25 \cdot 6$ | 24.4 | 23.8 | 24.0 | 24.5 | $25 \cdot 0$ | $25 \cdot 6$ | $25 \cdot 9$ | 25.5 | 25.3 | $25 \cdot 2$ | $25 \cdot 2$ | 25.2 | 25.4 | 25.6 | $25 \cdot 6$ |
| June | 250 | 25.4 | 25.4 | $25 \cdot 4$ | $25 \cdot 5$ | 25.7 | 27.0 | $28 \cdot 3$ | $28 \cdot 3$ | $27 \cdot 3$ | $25 \cdot 8$ | 24:1 | $23 \cdot 3$ | $23 \cdot 1$ | $23 \cdot 3$ | $23 \cdot 8$ | $24 \cdot 6$ | $25 \cdot 1$ | 25.6 | $25 \cdot 1$ | $25 \cdot 1$ | 24-9 | 25.0 | 25.0 | 25.1 | 25.3 |
| Joly | 24.8 | 24.3 | 25.0 | $25 \cdot 1$ | 25.1 | $25 \cdot 2$ | 26.3 | $27 \cdot 0$ | $26 \cdot 9$ | 26.2 | $25 \cdot 1$ | $24 \cdot 2$ | 23.4 | $3 \cdot 3$ | 23.5 | 23.7 | $24 \cdot 1$ | 24.5 | 24:5 | 24.3 | 24:3 | 24.2 | $24 \cdot 3$ | 24.4 | 24.6 | $24 \cdot 8$ |
| A0guat | 211 | 213 | $-243$ | 24.4 | $24 \cdot 3$ | 24.8 | 26.0 | $27 \cdot 0$ | 27.3 | 26.0 | $24 \cdot 4$ | -22.9 | $22 \cdot 3$ | 21-9 | $22 \cdot 1$ | 22.7 | 23.2 | 24.0 | 23.9 | $23 \cdot 8$ | $23 \cdot 8$ | 23.8 | 23.9 | 24.0 | 24.1 | 24-1 |
| Beptomior | 238 | 23.3 | 24:0 | $24 \cdot 1$ | 24.1 | 24'2 | $25 \cdot 1$ | $20 \cdot 2$ | $20 \cdot 0$ | 24.9 | $23 \cdot 4$ | $22 \cdot 1$ | 21.3 | 21.1 | 21.7 | 22.8 | 23.7 | 24.0 | 23.7 | 23.6 | 23.4 | 23.4 | 23.5 | 23.7 | 23.7 | $23 \cdot 6$ |
| Yein | 9 | 25.1 | 25.2 | $25 \cdot 2$ | $25 \cdot 2$ | 25.3 | 293 | $27 \cdot 2$ | 27.3 | 26.5 | $25 \cdot 1$ | 23.8 | $23 \cdot 1$ | $22 \cdot \theta$ | $23 \cdot 3$ | 23.9 | 24.5 | 24.9 | 24.9 | 24.7 | 24.6 | 24.5 | 24.6 | 24.7 | 24.9 | 249 |

Diurnal Inequality of the Declination at Toungoo as deduced from the preceding Table.


| Summer. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| April | +0.1 | +0.3 | +0.3 | +0.2 | +02 | 0.1 | +0.5 | +150 | +1:8 | +1.0 | +0.5 | -0.8 | -1.8 | -1.7 | -1/4 | -0.7 |  | +0.2 | 0.0 | -0.1 |  | -0.3 |  | -0.1 | +0.1 |
| ${ }_{\text {Hay }}$ | 00 | +0.2 | +0.4 | +03 | +0.2 | +0:3 | +1.1 | +19 | +2.0 | +1:3 | 0.0 | $1 \cdot 2$ | -1.8 | -1.6 | $-1 \cdot 1$ | -0.6 | 0.0 | +0.3 | -0.1 | -0.3 | -0 | - | 4 | 2 | 00. |
| June | -0.3 | +011 | +0.1 | +0.1 | +02 | +0.4 | +1.7 | +3.0 | +3.0 | +2.0 | +0.5 | 2 | -2.0 | -2.2 | -2.0 | -1.5 | -0.7 | -0.2 | +0:3 | $-0.2$ | -0 | - | -0:3 | -0.3 | -0.2 |
| Juis | 0.0 | +0.1 | +0.2 | 3 | + | +0.4 | +1.5 | +2.2 | +2.1 | +14 | +0.3 | -0.6 | -1.4 | -1.5 | -13 | $-1.1$ | -0.7 | $-0.3$ | -09 | -0 | -0.5 | -0 | -0.5 | -0.4 | -0.2 |
| ${ }^{\text {Augut }}$ | $0 \cdot 0$ | +0.2 | +0.2 | +0.3 | +0:5 | +.07 | +1.9 | +29 | +3.2 | +1.9 | +0:3 | -12 | -1 | -2:2 | $-20$ | -1.4 | -0.9 | $-0.1$ | -0:2 |  | -0.3 | -0.3 | -0.2 | -0.1 | $0 \cdot 0$ |
| September | +0.2 | +0:3 | +0.4 | +0.5 | +0.5 | +0.6 | +1.5 | +2.6 | +2.4 | +1.3 | -0.2 | -15 | -2:3 | -2.5 | -19 | $-0.8$ | $+0.1$ | +0.4 | + | 0.0 | -0.2 | -0.2 | -01 | +0.1 | +0.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | -1.6 | -1.0 | -0.4 | 0.0 | 0.0 | -0.2 | - ${ }^{\text {a }}$ | -0.4 | -0.9 | -0.3 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



Hourly Means of Fertical Force in C. G. S. Units (Corrected for temperature) at Toungoo from the selected quiet days in 1910.


Winter.


Summer.

| April . | 504 | 504 | 504 | 503 | 503 | 503 | 507 | 508 | 498 | 490 | 483 | 481 | 483 | 489 | 498 | 502 | 504 | 503 | 501 | 501 | 500 | 502 | 503 | 503 | 503 | 499 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| May | 501 | 502 | 502 | 501 | 501 | 502 | 508 | 504 | 499 | 491 | 485 | 486 | 491 | 498 | 502 | 505 | 505 | 503 | 500 | 500 | 500 | 511 | 502 | 502 | 503 | 500 |
| June | 501 | 500 | 500 | 501 | 502 | 502 | 506 | 506 | 497 | 485 | 480 | 477 | 477 | 484 | 489 | 494 | 498 | 499 | 498 | 497 | 499 | 499 | 499 | 499 | 499 | 495 |
| July | 508 | 507 | - 507 | 507 | 507 | 507 | 511 | 508 | 504 | 496 | 494 | 493 | 488 | 492 | 498 | 502 | 502 | 501 | 500 | 690 | 501 | 502 | 502 | 503 | 502 | 503 |
| August | 510 | 510 | 510 | 610 | 510 | 510 | 615 | 515 | 508 | 496 | 488 | 487 | 485 | 491 | 496 | 501 | 506 | 508 | 505 | 505 | 507 | 507 | 507 | 507 | 507 | 504 |
| September | 604 | 604 | 504 | 604 | 504 | 505 | 510 | 508 | 497 | 487 | 482 | 480 | 488 | 494 | 500 | 507 | 509 | 507 | 505 | 506 | 507 | 509 | 508 | 508 | 508 | 501 |
| Means | 505 | 505 | 505 | 504 | 605 | 605 | 509 | 508 | 501 | 491 | 485 | 484 | 485 | 491 | 497 | 502 | 504 | 504 | 502 | 502 | 502 | 503 | 504 | 50.4 | 504 | 600 |

Diurnal Inequality of the Vertical Force at Toungoo as deduced from the preceding Table.


N. $22^{\circ}+$

| Months. | , | , | 1 | , | , | , | , | , | , | , | , | , | , | - | , | , | , | , | , | , | , | , | ، | , | , | , |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jamuary | $62 \cdot 2$ | 62•1 | $62 \cdot 2$ | 62-1 | $62 \cdot 1$ | 621 | $62 \cdot 1$ | $61 \cdot 9$ | 61.8 | $61 \cdot 4$ | $60 \cdot 8$ | 59.9 | $59 \cdot 8$ | $59 \cdot 9$ | 60.0 | 69.8 | $61 \cdot 7$ | 62.0 | $62 \cdot 0$ | 621 | 62.1 | $62 \cdot 1$ | $62 \cdot 3$ | 62.2 | $62 \cdot 2$ | 61.6 |
| Tebraty | 02.6 | 62.5 | 62.5 | 62.5 | 62.4 | 62.4 | 62.3 | $62 \cdot 2$ | $61 \cdot 8$ | $61 \cdot 3$ | 60.7 | 60.5 | 60.5 | $60 \cdot 8$ | 61.5 | 62.0 | 62.1 | 62.2 | $62 \cdot 3$ | 62.3 | 62.3 | 62.5 | 62.4 | 62.4 | 62.4 | 62.0 |
| March | 62-2 | $62 \cdot 3$ | 62.2 | 62.1 | 62.1 | 62.2 | 62.3 | $60 \cdot 2$ | 61.5 | $60 \cdot 6$ | 59.6 | 59.2 | $60 \cdot 1$ | 60.6 | 61.5 | 62.0 | 62.4 | $62 \cdot 3$ | $62 \cdot 4$ | $62 \cdot 6$ | 62.3 | 62.9 | 62. $\theta$ | 62.9 | 62.9 | 61.8 |
| Oitober | $\cdots$ | $\cdots$ | $\cdots$ | $\ldots$ | $\ldots$ | $\cdots$ | $\cdots$ | $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | ... | $\ldots$ | $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | .'• | $\cdots$ |
| November | $\ldots$ |  | $\ldots$ | .. | $\cdots$ | ... | $\ldots$ | ... | ... | $\cdots$ | $\cdots$ | $\cdots$ | $\ldots$ | $\ldots$ | $\cdots$ |
| Deçember | $\cdots$ |  | $\ldots$ | $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\ldots$ | $\ldots$ | $\cdots$ | $\cdots$ | ... | .. | $\cdots$ | ... | $\ldots$ | $\cdots$ | $\cdots$ | ... | $\cdots$ | $\ldots$ | $\cdots$ | $\ldots$ | $\ldots$ | $\cdots$ |
| Meana | ... | $\ldots$ |  | $\ldots$ |  | $\cdots$ | $\cdots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | ... | ... | $\ldots$ | $\cdots$ | $\cdots$ | ... | $\ldots$ | $\cdots$ | $\ldots$ | $\cdots$ | ... | *** | $\cdots$ | ... | $\ldots$ |

Sumwer.


| Hoars, | Mid. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Noon. | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | Mid. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Winter.

| Month, | , | , | , | , | , | , | , | , | , | , | , | , | , | , | 1 | , | , | , | , | , | , | , | , | , | , |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Janary | $.1+0.6$ | +0.5 | +0.6 | +0.5 | +0.5 | +0.5 | +0.5 | +0.3 | +0.2 | -0.2 | -0.8 | -1.7 | -1.8 | $-17$ | -1.6 | -0.8 | $+0 \cdot 1$ | $+0 \cdot 4$ | $+0.4$ | $+0.5$ | +0.5 | +03 | +0.7 | $+0.6$ | +0.6 |
| February | . +0.8 | $+0.5$ | $+0.5$ | $+0.5$ | +0.4 | +04 | +0.3 | $+0 \cdot 2$ | -0.2 | -0.7 | -1•3 | -1.5 | -1.5 | -1.2 | -0.5 | 0 | +0.1 | $+0.2$ | $+03$ | +03 | $+6.3$ | +0.6 | $+0.4$ | +0.4 | $+0.4$ |
| March | . +0.4 | $+0.5$ | +04 | +03 | $+0 \cdot 3$ | +0.4 | +0.5 | +0.4 | $-0.3$ | -12 | -22 | $-2 \cdot \theta$ | $-1.7$ | $-1.2$ | $-0.3$ | +0.2 | $+0.6$ | $+0 \cdot 5$ | +0.6 | $+0.8$ | +10 | $+1 \cdot 1$ | $+1 \cdot 1$ | $+1 \cdot 1$ | $+1 \cdot 1$ |
| October . | $\bullet$ | $\cdots$ | ... | $\cdots$ | .. | $\cdots$ | ... | ... | $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | . $\cdot$ | $\ldots$ |
| November | - | ... | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | - ${ }^{\prime}$ | $\cdots$ | $\cdots$ | $\ldots$ | * | '* | $\cdots$ | $\cdots$ | $\cdots$ | $\ldots$ | $\cdots$ | $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\ldots$ | $\cdots$ | ... | $\cdots$ |
| December | - ... | $\cdots$ |  |  | $\cdots$ | $\cdots$ | ... | $\cdots$ | $\cdots$ | ... | '. | $\cdots$ | ... | ... | $\cdots$ | $\ldots$ | '. | $\cdots$ | $\ldots$ | ... | $\ldots$ | $\cdots$ | $\cdots$ | ... | $\cdots$ |
| Seads | - |  | $\cdots$ | $\ldots$ | ... | $\ldots$ | ... | $\cdots$ | $\ldots$ | $\ldots$ |  | $\cdots$ | … | $\cdots$ | $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\ldots$ | ... | ... | $\ldots$ | $\cdots$ | - $\cdots$ | ... |

Summer.

G.-Hourly Means of Horizontal Force in C. G. S. Units (Corrected for temperature) at Kodaikhānal from the selected quiet days in 1910.


$$
\cdot 37000 \text { C. G. S. }+\quad \text { Winter. }
$$

|  | $\gamma$ | $\boldsymbol{\gamma}$ | $\gamma$ | 7 | $\gamma$ | $\gamma$ | 7 | 7 | 7 | $\boldsymbol{\gamma}$ | $\gamma$ | $\gamma$ | $\boldsymbol{\gamma}$ | $\gamma$ | $\gamma$ | $\boldsymbol{\gamma}$ | 7 | $\boldsymbol{\gamma}$ | 7 | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | 7 | $\gamma$ | $\gamma$ | $\gamma$ | $\boldsymbol{\gamma}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Janoary | 462 | 482 | 463 | 462 | 462 | 463 | 465 | 471 | 477 | 489 | 508 | 526 | 534 | 534 | 519 | 499 | 481 | 468 | 467 | 468 | 467 | 466 | 46.5 | 463 | 463 | 481 |
| Febrary | 453 | 455 | 454 | 457 | 458 | 457 | 459 | 466 | 478 | 496 | 506 | 511 | 502 | 489 | 470 | 462 | 458 | 462 | 465 | 461 | 459 | 457 | 4.99 | 457 | 458 | 469 |
| March . | 458 | 461 | 462 | 461 | 461 | 463 | 461 | 469 | 494 | 531 | 557 | 558 | 541 | 509 | 478 | 460 | 458 | 465 | 469 | 464 | 461 | 458 | 457 | 457 | 459 | 48) |
| October | 450 | 461 | 460 | 462 | 464 | 462 ! | 461 | 464 | 485 | 512 | 534 | 539 | 525 | 505 | 484 | 472 | 471 | 4.5 | 476 | 471 | 468 | 467 | 467 | 466 | 466 | 479 |
| November | 474 | 475 | 479 | 480 | 479 | 479 | 483 | 492 | 505 | 520 | 528 | $52 \theta$ | 521 | 510 | 501 | 497 | 494 | 490 | 484 | 482 | 480 | 481 | 480 | 478 | 478 | 4.42 |
| December | 493 | 496 | 497 | 497 | 497 | 498 | 499 | 501 | 509 | 520 | 536 | 545 | 542 | 542 | 536 | 527 | 521 | 510 | 505 | 501 | 497 | 499 | 4 93 | 498 | 497 | 511 |
| Means | 486 | 468 | 469 | 470 | 470 | 470 | 471 | 477 | 491 | 511 | 528 | 535 | 528 | 615 | 498 | 486 | 48 I | 478 | 478 | 475 | 472 | 471 | 470 | 470 | 479 | 485 |

Summer.

| April . | 453 | 454 | 465 | 455 | 455 | 456 | 449 | 457 | 480 | 514 | 537 | 547 | 537 | 508 | 475 | 457 | 454 | 4:8 | 462 | 461 | 459 | 458 | 459 | 459 | 460 | 473 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| May | 468 | 468 | 469 | 470 | 469 | 469 | 468 | 474 | 495 | 514 | 526 | 532 | 523 | 508 | 490 | 474 | 471 | 474 | 475 | 473 | 473 | 472 | 472 | 471 | 473 | 483 |
| June | 469 | 467 | 471 | 472 | 471 | 469 | 469 | 473 | 485 | 503 | 522 | 540 | 538 | 527 | 503 | 483 | 460 | 455 | 459 | 461 | 462 | 468 | 465 | 467 | 468 | 482] |
| July | 474 | 475 | 476 | 476 | 475 | 475 | 479 | 482 | 490 | 502 | 503 | 513 | 512 | 500 | 486 | 479 | 475 | 476 | 479 | 478 | 477 | 478 | 478 | 479 | 481 | 48. |
| Augut | 487 | 468 | 470 | 469 | 469 | 470 | 470 | 472 | 487 | 509 | 530 | 536 | 533 | 520 | 507 | 494 | 480 | 473 | 475 | 474 | 473 | 472 | 469 | 468 | 478 | 486 |
| September | 478 | 481 | 478 | 478 | 480 | 479 | 479 | 486 | 506 | 587 | 548 | 542 | 535 | 521 | 505 | 491 | 481 | 481 | 485 | 481 | 479 | 478 | 479 | 478 | 482 | 494 |
| Meant | 468 | 469 | 470 | 470 | 470 | 470 | 469 | 474 | 491 | 512 | 528 | 535 | 530 | 514 | 494 | 480 | 470 | 470 | 473 | 471 | 470 | 471 | 470 | 470 | 474 | 484 |


| Hoars. | Mid. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Noon. | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | Mid. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Winter.

| 1910 Months. | $\boldsymbol{\gamma}$ | $\gamma$ | 7 | $\gamma$ | $\gamma$ | $\gamma$ | 7 | $\gamma$ | 7 | $\gamma$ | $\gamma$ | $\boldsymbol{\gamma}$ | $\gamma$ | $\gamma$ | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | $\gamma$ | $\boldsymbol{\gamma}$ | 7 | $\gamma$ | 7 | $\gamma$ | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | -19 | $-18$ | $-18$ | $-19$ | -19 | -18 | -16 | -10 | -4 | +8 | +27 | +45 | $+53$ | $+53$ | +38 | $+18$ | 0 | $-13$ | -14 | -13 | -14 | -15 | -16 | -18 | -18 |
| February | -16 | -14 | $-15$ | -12 | $-11$ | -12 | $-10$ | $-3$ | $+9$ | +27 | +37 | +42 | +33 | +20 | $+1$ | $-7$ | -11 | -7 | -4 | -8 | $-10$ | -12 | -10 | -12 | -11 |
| March | -24 | -19 | -18 | -19 | -19 | -18 | -19 | -11 | +14 | +51 | +77 | +79 | +61 | +29 | $-2$ | -20 | -22 | -15 | -11 | -16 | -19 | -22 | -23 | -23 | -21 |
| October | -20 | -18 | -19 | -17 | $-15$ | $-17$ | -18 | - 15 | $+6$ | +33 | +55 | +80 | +46 | $+26$ | $+5$ | $-7$ | $-8$ | -4 | -3 | -8 | -11 | -12 | -12 | -13 | $-13$ |
| Norember | -18 | -17 | -18 | -12 | -13 | -13 | $-9$ | 0 | +13 | +28 | +36 | +37 | +29 | +18 | $+9$ | $+5$ | $+2$ | -2 | -8 | -10 | -12 | -11 | -12 | -14 | $-14$ |
| December | $-18$ | $-15$ | -14 | -14 | $-14$ | -13 | -12 | -10 | -2 | $+9$ | +25 | +34 | +31 | +31 | +25 | +16 | +10 | -1 | -6 | -10 | -14 | -12 | -18 | -13 | -14 |
| - Means | -19 | -17 | -16 | -15 | $-15$ | $-15$ | -14 | -8 | $+6$ | +26 | +43 | +50 | +43 | +30 | +13 | $+1$ | -4 | $-7$ | -7 | -10 | -13 | -14 | -15 | -15 | -15 |

Summer.

Hourly Means of the Declination as lletermined at Kodaikanal from the selected quiet days in 1910.

| Hoars． | Mid． | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Noon． | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | Mid． | Menns． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{W} \mathrm{O}^{\circ}+\quad$ Wider． |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Months． | ， |  | ， | ， | ， | ， | ， | ， | ， |  |  |  |  |  | ， |  |  |  | ， | ， | ， | ， | ， | ， | ， | ， |
| January | 52.6 | 52．8 | 52.7 | $52 \cdot 8$ | 52－8 | 53.0 | 53.2 | 53.5 | 53.3 | $52 \cdot 2$ | 51.6 | 51.6 | 51.7 | $51 \cdot 9$ | 52.2 | $52 \cdot 3$ | $52 \cdot 4$ | 52.4 | 52.5 | 52.5 | 52.5 | 52.5 | $52 \%$ | $52 \cdot 6$ | 32.6 | 52.5 |
| February | 53．1 | 53.0 | 53.0 | 53.0 | 53.1 | 53.3 | $53 \cdot 5$ | $53 \cdot 6$ | 53.6 | 53.3 | 53．1 | $53 \cdot 2$ | 53.1 | $52 \cdot 9$ | $52 \cdot 5$ | $52 \cdot 4$ | $52 \cdot 3$ | 52.6 | 53.1 | 53.0 | 52.9 | 53.0 | 53.0 | 53.0 | 52.9 | 53.0 |
| March | 53.3 | $53 \cdot 3$ | $53 \cdot 4$ | 53.5 | 53.6 | 53.6 | 53.5 | $53 \cdot 2$ | $52 \cdot 9$ | 52.8 | 52．8 | 53.0 | 53.5 | 53.4 | 53．3 | 52.7 | 52.7 | 53.0 | $53 \cdot 4$ | $53 \cdot 6$ | 53.6 | 53.5 | 53．5 | 53.4 | 53.4 | 53.3 |
| October | 56.2 | 56.3 | 56．1 | $56 \cdot 2$ | 56.3 | 56.4 | 56．1 | 55.5 | 55.4 | $56 \cdot 1$ | 56.5 | $56 \cdot 9$ | 57.1 | $57 \cdot 1$ | 56.7 | 56.0 | 55.7 | 55.8 | 56.1 | 56.2 | 56.2 | 56.2 | $56 \cdot 3$ | $56 \cdot 3$ | 56.1 | 56.8 |
| November | 56.9 | 57.1 | 57.2 | 57．2 | 57.5 | 57.4 | 57.8 | 58.0 | 57.5 | 57.2 | 57.3 | 57.4 | $57 \cdot 4$ | 57－1 | 58.8 | 57.0 | $56 \cdot 9$ | $56 \cdot 9$ | 57.0 | 57.0 | 57.0 | 57．1 | 57.1 | 57．2 | $57 \cdot 1$ | 57.2 |
| Decetember | 57.4 | 57.4 | 57.5 | 57.7 | 57.8 | 57.9 | 58.0 | 58.2 | 57.8 | $57 \cdot 3$ | 57．5 | 57.8 | 57.5 | 57．4 | $57 \cdot 4$ | 57.1 | 57.0 | 58.8 | 57.0 | 57.1 | 57.2 | 57.3 | 57．4 | 57．4 | $57 \cdot 4$ | 57.4 |
| Means | $54 \cdot 9$ | 55.0 ！ | $55 \%$ | 55.1 | 55.2 | 55.3 | $55 \cdot 4$ | $55 \cdot 3$ | $55 \cdot 1$ | 54.8 | 54.8 | 550 | 55.1 | 55.0 | 54，8 | 54．6 | 54.5 | 54.6 | 54，9 | $54 \cdot 9$ | $5 \pm 9$ | 54.9 | 55.0 | 65＇0 | 54.9 | 54.9 |


| O | 获 | 号 | 管 | 令 | io | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{0}{0}$ |  | $\overrightarrow{i 8}$ | $\begin{gathered} \text { m } \\ \text { 品 } \end{gathered}$ | 品 | 俞 | 安 |
| - - | $\begin{aligned} & \text { 也 } \\ & \text { it } \end{aligned}$ | 보 | 菖 | $\begin{aligned} & 8 \\ & i 8 \\ & i 8 \end{aligned}$ | $\begin{aligned} & i \\ & i s \\ & i n \end{aligned}$ | 翏 |
| 调 | $\underset{\substack{\infty \\ i \\ i n}}{\infty}$ | 8 | 令 | 品 | ْ | io |
| + | 우 | N | ion | $\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$ | 是 | 菏 |
| iㅛ | $\begin{aligned} & 9 \\ & \stackrel{7}{B} \end{aligned}$ | $\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$ | $\begin{aligned} & \infty \\ & \text { in } \\ & \text { in } \end{aligned}$ | is | 简 | － |
| $0$ | $\begin{aligned} & \infty \\ & \text { 何 } \\ & \hline \end{aligned}$ | $\stackrel{\rightharpoonup}{i s}$ | 令 | ie | 为 | \％ |
| 行 | $0$ | ${\underset{\sim}{0}}_{\infty}^{\infty}$ | 落 | $\begin{aligned} & \infty \\ & \text { is } \end{aligned}$ | 会 | $\overrightarrow{i s}$ |
| No | $\begin{gathered} \infty \\ \text { \# } \\ \hline 1 \end{gathered}$ | $\begin{aligned} & \infty \\ & \dot{+1} \\ & \hline \end{aligned}$ | $\stackrel{\rightharpoonup}{8}$ | $\begin{aligned} & \infty \\ & i=0 \\ & i 8 \end{aligned}$ | 品 | \％ |
| +in | $\begin{aligned} & \text { m } \\ & \text { 付 } \end{aligned}$ | i" | O | ... | $\begin{aligned} & 0 \\ & \text { in } \end{aligned}$ | : |
| $\underset{i}{\text { it }}$ | $\underset{\substack{\infty \\ \text { if } \\ \hline}}{ }$ | 骨 | 茴 | 今 | 菏 | － |
| Co | 菏 | $\hat{i 0}$ | $\begin{aligned} & \text { N } \\ & \text { Bi } \end{aligned}$ | ت | in | 感 |
| $\begin{aligned} & \text { H } \\ & i 0 \end{aligned}$ | 曾 | io | 酉 | $\underset{i}{\infty}$ | $\underset{i}{\infty}$ | $\stackrel{\infty}{8}$ |
| 菖 | $\begin{aligned} & \text { n } \\ & \text { io } \\ & i 0 \end{aligned}$ | 念 | $\stackrel{\uparrow}{\dot{\theta}}$ | $\underset{i 0}{E}$ | is | $\begin{aligned} & \infty \\ & \dot{\phi} \\ & i \end{aligned}$ |
| $\stackrel{\substack{0 \\ i 0}}{ }$ | $\begin{aligned} & \circ \\ & \text { io } \end{aligned}$ | 落 | 埌 | 会 | N | 碞 |
| $\begin{aligned} & \hline \text { O} \\ & \text { in } \end{aligned}$ | 落 | $\begin{aligned} & \infty \\ & \text { if } \\ & \text { in } \end{aligned}$ | $\begin{aligned} & \infty \\ & : 8 \\ & i \end{aligned}$ | $\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{aligned} & 9 \\ & \text { 品 } \end{aligned}$ | io |
| $\stackrel{\ominus}{0}$ | 何 | er | $\underset{\substack{0 \\ \hline \\ \hline}}{ }$ | $\stackrel{\vec{t}}{\overrightarrow{i n}}$ | i | 皆 |
| $\begin{aligned} & \infty \\ & \text { in } \\ & \text { in } \end{aligned}$ | 珮 |  | $\stackrel{\infty}{i 0}$ | 官 | 萑 | \％ |
| $\begin{aligned} & \text { Pid } \\ & \text { î } \end{aligned}$ | $\begin{aligned} & \text { an } \\ & \text { in } \end{aligned}$ | $\begin{aligned} & \infty \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$ | $\begin{aligned} & \infty \\ & \dot{\oplus} \end{aligned}$ | $\begin{aligned} & \dot{0} \\ & \text { in } \end{aligned}$ | $\begin{aligned} & \text { D } \\ & \dot{0} \end{aligned}$ | \％ |
| 曾 | 埌 | $\stackrel{0}{8}$ | 荷 | 今 | is | \％ |
| ت | M | 商 | $\begin{aligned} & \text { 付 } \\ & \hline 0 \end{aligned}$ | \% | $\begin{aligned} & 0 \\ & i n \\ & i n \end{aligned}$ | － |
| 영 | A | 问 | Pi | \％ | $\begin{aligned} & \because \\ & i 0_{0} \end{aligned}$ | $\stackrel{9}{4}$ |
| ir | $\underset{\substack{0}}{\substack{n \\ \hline}}$ | 合 | 合 | $\begin{aligned} & \text { n } \\ & i 0 \end{aligned}$ | $\stackrel{0}{0}$ | $\stackrel{\infty}{i}$ |
| $\stackrel{\circ}{0}$ | 䈌 | 保 | 易 | $8$ | 会 | 8 |
| 俞 | 様 | $\stackrel{\infty}{\dot{0}}$ | is | ب | 荷 | \％ |
| $\stackrel{\circ}{\text { ¢ }}$ | － | $\begin{aligned} & \hline \text { B } \\ & \text { © } \end{aligned}$ | $\stackrel{\rightharpoonup}{8}$ | 永 | 沮 | 令 |
| $\begin{aligned} & \text { 弟 } \\ & \end{aligned}$ | 品 | 珰 | 合 |  | $\begin{aligned} & \text { 容 } \\ & \text { 号 } \\ & \stackrel{\rightharpoonup}{\mathbf{a}} \end{aligned}$ | 昜 |

Diurnal Inequality of the Declination at Kodaikānal as deduced from the preceding Table.

| Ноап. | Mid. | 1 | 2 | 3 | 4 | 5 | 6 | 17 | 8 | 9 | 10 | 11 | Noon. | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | Mid. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Winter. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1!10. | , |  |  |  |  |  |  |  | 1 ' | , |  |  | , |  |  |  |  |  |  |  |  |  |  | , | , |
| Janaary ${ }^{\text {Months. }}$ | -0.1 | -0.1 | -0.2 | -0.3 | -0.3 | -0.5 | -0.7 | $-1.0$ | -0.8 | $+0.3$ | $+0.0$ | +0.8 | +0.8 | +0.6 | +0.3 | +0.2 | +0.1 | +0.1 | 0 | 0 | 0 | 0 | 0 | -0:1 | $-0.1$ |
| February | -0.1 | 0 | 0 | 0 | -0.1 | $-0.3$ | -0.5 | -0. 0 | -0.6 | -0.3 | $-0.1$ | -0.2 | -0.1 | +0.1 | $+0.5$ | +0.6 | +0.7 | +0.4 | -0.1 | 0 | +0.1 | 0 | 0 | 0 | $+0 \cdot 1$ |
| Ma:ch | 0 | 0 | $-0.1$ | -0.2 | -0.3 | -03 | -0.2 | $+0.1$ | $+0.4$ | +0.5 | +05 | +0.3 | $-0.2$ | $-0.1$ | +0.1 | +0.6 | $+0 \cdot 6$ | +0.3 | -0.1 | $-0.3$ | -03 | -0.2 | -0.2 | -0.1 | -0.1 |
| October | 0 | -0.1 | +0.1 | 0 | -0.1 | -0.2 | +0.1 | +0.7 | -0.8 | +0.1 | -0.3 | -0.7 | $-0.9$ | $-0.9$ | -0.5 | +02 | +0.5 | +0.4 | +0.1 | 0 | 0 | 0 | -0.1 | -0.1 | +0.1 |
| Norember | +0.3 | $+0.1$ | 0 | 0 | -0.3 | -0.2 | -0.0 | -0.8 | -0.3 | 0 | -0.1 | -0.2 | -0.2 | +0.1 | +0.4 | +0.3 | -0.3 | $+0.3$ | +0.2 | +0.2 | +0.2 | +0.1 | $+0 \cdot 1$ | 0 | +0.1 |
| December | 0 | 0 | -0.1 | $-0 \cdot 3$ | -0.4 | -0.5 | $-0.6$ | -0.8 | -0.4 | +0.1 | $-0.1$ | -0.4 | -0.1 | 0 | 0 | +0.3 | +0.4 | +0.0 | +0.4 | $+0.3$ | +0:2 | +0.1 | 0 | 0 | 0 |
| - Means $^{\text {a }}$ | 0 | -0.1 | -0.1 | -0.2 | $\mid-0.3$ | -0.4 | -0.5 | $-0 \cdot 4$ | -0.2 | +0.1 | +0.1 | -0.1 | -0.2 | -011 | +0.1 | $+0.3$ | +0.4 | +0.3 | 0 | 0 | 0 | 0 | $-0 \cdot 1$ | -0.1 | 0 |


| April | $+0 \cdot 2$ | +0.2 | +0.2 | +02 | +0.2 | +0.1 | +0.4 | +13, +1.4 | $+0.8$ | +0.3 | 0 | $-1 \cdot 1$ | -1.2 | $-1.0$ | -0.5 | -0.2 | 0 | 0 | -0.1 | -0.2 | $-0.2$ | 0 | +0.1 | +0.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| May | +0.3 | +0.4 | +0.4 | +04 | +0.3 | +0.4 | +0.7 | $+1.5+1.4$ | +0.5 | -0.6 | $-1.3$ | -1.8 | $-1 \cdot 3$ | -0.7 | -0.1 | +0.4 | + 0.4 | +0.1 | $-0.1$ | $-0.2$ | $-0 \cdot 3$ | -0.1 | +0.1 | $+0.2$ |
| June | $+0 \cdot 1$ | +0.2 | +0.3 | $+0.4$ | +0.3 | +0.4 | +1.1 | +2.2 +2.1 | $+1.1$ | $+0 \cdot 2$ | -0.4 | $-1.7$ | -2.0 | $-1.7$ | $-1.0$ | -0.4 | +02 | $+0.2$ | -01 | -0.3 | -0.2 | -0.2 | -0.1 | -0.1 |
| July | +0.2 | +0.3 | +03 | +0.3 | +0.4 | +0.5 | +10 | +1.5; +1.5 | $+1 \cdot 0$ | 0 | $-0.7$ | $-1.4$ | $-1 \cdot 4$ | -0.9 | -0.3 | +0.1 | +0.2 | -0.1 | -0.4 | -0.5 | -0.4 | -0.4 | $-0.1$ | 0 |
| August | 0 | +0.1 | +0.2 | +0\%4 | +0.4 | +0.5 | +1.0 | $+2 \cdot 1+20$ | $+13$ | -02 | $-1 \cdot 5$ | $-2.0$ | -2.1 | $-1.7$ | $-1.0$ | -0.3 | -0.1 | +0.1 | -0.2 | -0.2 | -0.2 | -0.2 | -0.2 | -0.2 |
| Septemier | 0 | +0.2 | $+0.2$ | +0.3 | $+03$ | +0.4 | +1.0 | $+2 \cdot 0+1 \cdot 8$ | $+0.9$ | 0 | $-1 \cdot 3$ | -20 | $-2.0$ | $-14$ | -0.5 | +0.3 | +0.4 | +0.2 | $-0.1$ | -0.3 | -0.3 |  | 0 | 0 |
| Means | $+0 \cdot 1$ | +02 | +0.2 | +0.3 | +0.3 | $1+0.3$ | +0.8 | +177+1.7 | +0.9 | -0.1 | -0.9 | $-1.7$ | -1.7 | $-1 \cdot 3$ | -0.6 | -0.1 | $+0.1$ | 0 | -0.2 | -0.3 | -0.3 | $-02$ | -0.1 | $\bigcirc$ |

Hourly Means of Vertical Force in C. G. S. Units (Corrected for temperature) at Kodaikänal from the selected quiet days in 1910.

| Hours. | 3id. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Noon. | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 23 | 23 | Mid. | Meana |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Winter.
.0200 C. G. S. +

| Months. | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | $y$ | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | 7 | $\gamma$ | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | $\gamma$ | $\gamma$ | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | $\gamma$ | $\boldsymbol{\gamma}$ | $\gamma$ | $\boldsymbol{\gamma}$ | $\gamma$ | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | $\gamma$ | $\gamma$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | 427 | 427 | 428 | 427 | 427 | 427 | 427 | 497 | 430 | 427 | 422 | 420 | 413 | 403 | 402 | 406 ! | 411 | 417 | 422 | 4.24 | 426 | 426 | 427 | 427 | 498 | 422 |
| February | 438 | 439 | .438 | 440 | 439 | 438 | 438 | 437 | 436 | 437 | 431 | 428 | $4: 7$ | 433 | 432 | 435 | 433 | 430 | 433 | 434 | 435 | 435 | 437 | 437 | 437 | 435 |
| Marcb | 444 | 446 | 446 | 443 | 445 | 447 | 448 | 447 | 446 | 439 | 428 | 418 | 417 | 422 | 431 | 439 | 441 | 441 | 439 | 440 | 441 | 442 | 443 | 446 | 446 | 439 |
| October | 485 | 485 | 485 | 484 | 485 | 485 | 487 | 487 | 484 | 477 | 473 | $48 \theta$ | 471 | 474 | 476 | 479 | 481 | 481 | 481 | 481 | 48? | 483 | 485 | 484 | 486 | 481 |
| Nosember | 486 | 486 | 488 | 487 | 486 | 487 | 487 | 486 | 489 | 486 | 485 | 487 | 487 | 484 | 481 | 481 | 483 | 484 | 485 | 496 | 487 | 483 | 483 | 489 | 489 | 486 |
| December | 492 | 493 | 492 | 4 Sl | 492 | 492 | 492 | 492 | 492 | 490 | 485 | 485 | 485 | 485 | 482 | 481 | 486 | 488 | 490 | 490 | 491 | 494 | 492 | 485 | 495 | 499 |
| Neans | 462 | 463 | 463 | 463 | 462 | 463 | 463 | 463 | 403 | 459 | 454 | 451 | 450 | 450 | 451 | 454 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 484 | 459 |


Diurnul Inequality of lhe Tertical Force at Kodainänal as deduced from the preceding Table.

| Hous. | Nid. | 1 | a | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Noon. | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ${ }^{21}$ | 22 | ${ }^{23}$ | Mid. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Winter. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Moiths. | $\gamma$ | $\gamma$ | $\gamma$ | $\gamma$ | ${ }^{7}$ | $\gamma$ | $r$ | $\gamma$ | $\checkmark$ | $\gamma$ | $\gamma$ | $\gamma$ | $\gamma$ | 7 | $\gamma$ |
| Janaury | +5 | +5 | +6 | +5 | +5 | +5 | +5 | +5 | +8 | +5 | 0 | -2 | -9 | -19 | -20 | -16 | -11 | -5 | 0 | +2 | +4 | +4 | +5 | +5 | +6 |
| February | +3 | + | +3 | +5 | + | +3 | +3 | +2 | +1 | +2 | -4 | -9 | -8 | -5 | -3 | 0 | -2 | -5 | -2 | -1 | 0 | 0 | +2 | +2 | +2 |
| March . | + | +7 | +7 | +7 | +6 | +8 | +9 | +8 | +7 | 0 | -11 | -.21 | -22 | -17 | -8 | 0 | +2 | +2 | 0 | +1 | +2 | +3 | +4 | +7 | +7 |
| October | + 4 | + | +4 | +3 | +4 | +4 | +6 | +6 | +3 | -4 | -8 | -12 | -10 | -7 | -5 | -2 | 0 | 0 | 0 | 0 | +1 | +2 | +4 | +3 | +5 |
| Norimber | 0 | 0 | +2 | +1 | 0 | 41 | +1 | 0 | +3 | 0 | -1 | +1 | +1 | -2 | -5 | -5 | -3 | -2 | -1 | 0 | +1 | +2 | +2 | +3 | +3 |
| December | +3 | + | +3 | +2 | +3 | +3 | +3 | +3 | +3 | +1 | -4 | -4 | -4 | -4 | -7 | --8 | -3 | -1 | +1 | +1 | +2 | +5 | +3 | + + | +6 |
| Means | +3 | +4 | +4 | +4 | +3 | +1 | +4 | +4 | +4 | 0 | -5 | -8 | -9 | -9 | -8 | -5 | -3 | -2 | -1 | 0 | +1 | +2 | +3 | +4 | +5 |
| Sammer. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| April . | +6 |  | +6 | +5 | +6 | +6 | +8 | +8 | +4 | -3 | -10 | -18 | -22 | -22 | --16 | -3 | +3 | +4 | +3 | +3 | +3 | +5 | +6 | +7 | +7 |
| Nay | +4 | +4 | + | +4 | +4 | +5 | +8 | +8 | +2 | -6 | -15 | -15 | -17 | -13 | -7 | -1 | +3 | +4 | +3 | +4 | +5 | +6 | +7 | +7 | +9 |
| June | +6 |  | +7 | +6 | +5 | +8 | +12 | +13 | +9 | +8 | -1 | -10 | -21 | -18 | -12 | -12 | -5 | +2 | +2 | +1 | +2 | +4 | +4 | +3 | +4 |
| July | +3 | +2 | +2 | +2 | +2 | +3 | +5 | +4 | +2 | -1 | -2 | -3 | -3 | -1 | +1 | +4 | +2 | -1 | -3 | -4 | -3 | -1 | -1 | -1 | 0 |
| August | +7 | +7 | +7 | +7 | +7 | +8 | +12 | +13 | +8 | +1 | -7 | -15 | -14 | -13 | -10 | -9 | -3 | 0 | -2 | -1 | +2 | +2 | +2 | +2 | +6 |
| September | +9 | +0 | +9 | +9 | +9 | +11 | +13 | + 7 | -6 | -15 | 21 | -31 | -25 | -16 | -7 | -1 | +4 | +4 | +3 | +3 | +4 | +5 | +7 | +7 | +8 |
| $\mathrm{I}^{\text {leans }}$ | +6 | +6! | +6 | +i | +6 | +7 | +10 | +9 | +3 | -3 | -9 | -16 | -17 | -14 | -8 | -4 | +1 | +2 | +1 | +1 | +2 | +4 | +4 | +4 | +e |

Hourly Means of the Dip as determined at Kodaikanal from the selected quiet days in 1910.


Winter.

| Months. | , | , | , | , | , | , | , | , | , | , | , | , | , | ' | , | , | , |  |  |  | , | , |  | , | , | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Janabry | $42 \cdot 4$ | $42 \cdot 4$ | $42 \cdot 5$ | 42.4 | 42.4 | 42.4 | 42.4 | $42 \cdot 4$ | $42 \cdot 6$ | 42.3 | 41.7 | 41.4 | $40 \cdot 7$ | 39.8 | 30.8 | $40 \cdot 3$ | 40.8 | 415 | 41.9 | $42 \cdot 1$ | 42.3 | $42 \cdot 3$ | 42.4 | $42 \cdot 4$ | 42.5 | $41 \cdot 8$ |
| Fedruary | 43.5 | $43 \cdot 6$ | 43.5 | $43 \cdot 6$ | 43.5 | 43.4 | 43'4 | $43 \cdot 3$ | $43 \cdot 1$ | $43 \cdot 1$ | 42.5 | $42 \cdot 0$ | $42 \cdot 2$ | 42.5 | $42 \cdot 8$ | $43 \cdot 1$ | $43 \cdot 0$ | 42.7 | 429 | $43 \cdot 1$ | $43 \cdot 2$ | $43 \cdot 2$ | $43 \cdot 3$ | 43.4 | 43.4 | 43•1 |
| March | 440 | $44 \cdot 2$ | 44:2 | 412 | $44 \cdot 1$ | 44.2 | 44.3 | 44.2 | 44.0 | 43.1 | 41.9 | 41.0 | 41.0 | 41.7 | 42.7 | 43.5 | 43.7 | 43.7 | 43.5 | $43 \cdot 6$ | 43.7 | 43.8 | $43 \cdot 9$ | $44 \cdot 2$ | 442 | 43.4 |
| October | 47.7 | $47 \cdot 7$ | 477 | 47.6 | 47.7 | 47.7 | 47.9 | 47.9 | 47.5 | 46.7 | $46 \cdot 2$ | 4.58 | $46 \cdot 1$ | 46.4 | 46.8 | $47 \cdot 1$ | $47 \cdot 3$ | 47.3 | 47.3 | 47.3 | $47 \cdot 4$ | 47.5 | 47.7 | 47.6 | 47.8 | $47 \cdot 2$ |
| November | 47.7 | 47.7 | $47 \cdot 9$ | 47.8 | 47.7 | $47 \cdot 8$ | 47.8 | $47 \cdot 6$ | 47.8 | 47.5 | 47.3 | 47.5 | $47 \cdot 5$ | 47.3 | $47 \cdot 1$ | $47 \cdot 1$ | $47 \cdot 3$ | $47 \cdot 4$ | $47 \cdot 6$ | 47.7 | 47-8 | 47.9 | 47.9 | $48 \cdot 0$ | 48.0 | 47.6 |
| December | $48 \cdot 2$ | $48 \cdot 2$ | $48 \cdot 1$ | 48.0 | 48.1 | $48 \cdot 1$ | $48 \cdot 1$ | 48.1 | $48 \cdot 1$ | $47 \cdot 8$ | $47 \cdot 3$ | $47 \cdot 2$ | $47 \cdot 2$ | 47.2 | 47.0 | 47.0 | 47.4 | 47.7 | 47.9 | $47 \cdot 9$ | 48.0 | $48 \cdot 3$ | $48 \cdot 2$ | $48 \cdot 4$ | $48 \cdot 4$ | 47.8 |
| Means | $45 \cdot 6$ | $45 \cdot 6$ | 45.7 | 45.6 | 45.6 | 45.6 | 45.7 | 45.6 | 45.5 | $45 \cdot 1$ | 4.45 | 44.2 | 44.1 | 442 | 44.4 | 4477 | 44.9 | $45 \cdot 1$ | 45.2 | 45.3 | $45 \cdot 4$ | 45.5 | 45.6 | $45 \cdot 7$ | $45 \cdot 7$ | $45 \cdot 2$ |

Summer.

Diurnal Inequality of the Dip at Kodaikanal as deduced from the preceding Table.

| Hours. | Mid. | 1 | 3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Noon. | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | mid. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Winter. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Months |  | , |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | , |  |
| Jantary . | +0.6 | +0.6 | +0.7 | +0.6 | +0.6 | +0.6 | +0.6 | +0.6 | +08 | +0.5 | -0.1 | -0.4 | -1.1 | -20 | -2.0 | -1.5 | -10 | -0.3 | +0.1 | +0.3 | +0.5 | +0.5 | +0.6 | +0.6 | +0.7 |
| Fobarary | +6.4 | +0.5 | +0.4 | +0.5 | +0.4 | +0.3 | +0.3 | +0.2 | 0 | 0 | -0.6 | $-1.1$ | -0.9 | -0.6 | $-0.3$ | 0 | -0.1 | -0.4 | -0.2 | 0 | +0.1 | $+0.1$ | +0.2 | +0.3 | +0.3 |
| Larch . | +0.6 | +0.8 | +0.8 | +0.8 | +0.7 | +0.8 | +0.8 | +0.8 | +0゙6 | -0.3 | -1.6 | -2.4 | -2.4 | -1.7 | -0.7 | $+0.1$ | +0.3 | +0.3 | +0.1 | +0.2 | +0.3 | +0.4 | +0.5 | +0.8 | +0.8 |
| Octuber. | +0.5 | +0.5 | +0\% | +0.4 | +0.5 | +0.5 | +0.7 | +0.7 | +0.3 | -0.5 | -1.0 | $-14$ | -1.1 | -08 | -0.4 | -0.1 | 0 | $+0.1$ | $+0.1$ | +0.1 | $+0.2$ | $+0.3$ | +0.5 | +0.4 | +0.6 |
| Norember | +0.1 | +0.1 | +0.3 | +0.2 | +0.1 | +0.2 | +0.2 | 0 | +0.2 | -0.1 | -0.3 | -0.1 | $-0.1$ | -0.3 | -0.5 | -0.5 | -0.3 | -0.2 | 0 | +0.1 | +0.2 | +0.3 | $+0.3$ | +0.4 | +0.4 |
| December | +0:4 | $+0.4$ | +0.3 | $+0.2$ | +0.3 | +0.3 | $+0 \cdot 9$ | +0.3 | +0.3 | 0 | -0.5 | -0.6 | -0.6 | -0.6 | -0.8 | -0.8 | -0.4 | $-0.1$ | +0.1 | +0.1 | +0.2 | +0.5 | +0.4 | +0.6 | +0.6 |
| - Mans | +0.4 | +0.4 | +0.5 | +0.4 | +0.4 | +0.4 | +0.5 | +0.4 | $+0.3$ | -0.1 | -0.7 | -1.0 | -1.1 | -10 | -0.8 | -0.5 | $-0.3$ | -0.1 | 0 | +0.1 | +0.2 | +0.3 | $+0.4$ | +0.5 | +0.5 |


| Summer. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| April | +0.7 | +0.7 | +0.7 | +0.6 | +0.7 | +0.7 | +0.9 | +0.9 | +0.3 | -0:5 | $-13$ | -2.1 | -2 4 | -2.2 | -1.5 | -0.2 | +0.4 | +05 | +0.4 | +0.4 | +0.4 | +0.6 | +0.6 | +0.7 | $+0.7$ |
| $M_{\text {ay }}$ | +0.4 | +0.4 | +0.4 | +0.4 | +0.4 | +0.5 | +0.7 | +0.7 | 0 | -0.8 | -1.7 | -1.7 | -1.9 | -1-4 | -0.8 | -0.1 | +0.3 | +0:3 | $+0.2$ | +0.4 | +0.4 | +0.5 | +0.6 | +0.6 | $+0.8$ |
| June | +0.6 | +0.6 | +0.6 | +0.5 | +0.4 | +0.7 | +1.1 | +12 | +0.7 | +0.1 | -0.4 | -1.9 | -2.3 | -2.0 | -13 | -1.2 | -0.4 | +0.3 | +0.2 | +0.1 | +0.2 | +0.4 | +0.4 | +0.3 | +0.4 |
| Joly | +0.3 | +0.2 | +0.2 | +0.2 | +0.2 | +0.3 | +0.4 | +0.3 | +0.1 | -0.2 | -0.4 | -0.5 | -0.5 | -0.2 | 0 | +0.3 | +0.2 | -0.1 | -0.3 | -0.4 | -0.3 | -0.1 | -0.1 | -0.1 | 0 |
| Angust. | +0.7 | +0.7 | +0.7 | +0.7 | +0.7 | +0.8 | +1.2 | +1.3 | +0.7 | -0.1 | -0.9 | -1.7 | -16 | -1.4 | -1.1 | -0.9 | $-0.3$ | +0.1 | -0.1 | 0 | +0.2 | +0.2 | + +1.3 | +0.3 | +0.6 |
| September | +0.9 | +0.9 | +0.9 | +0.9 | +0.9 | +1.1 | +1.3 | +0.7 | -0.6 | $-1.6$ | -2.2 | -3.1 | -2.5 | -1.6 | -0.7 | -0.1 | +0.4 | +0.4 | +0.2 | +0.3 | +0.5 | +0.6 | +0.7 | +0.7 | +08 |
| Means | +0.6 | +0.6 | +0.6 | +0.6 | +0.6 | +0.7 | 1.0 | +0.9 | +0.2 | -0.5 | -1.1 | -1:8 | -1.8 | -14 | -0.9 | -0.3 | +0.1 | $+{ }^{0 \cdot 3}$ | +0.1 | +0.2 | +0 | +0.4 | +0.5 | +0.5 | +0.6 |

# PART VII.-REPRODUCING OFFICES. 

PHOTO.-LITHG. OFFICE.

By Caftain A. H. Gwyn, I.A.
Photo. Branch.-The out-put of negatives, with the cost per 100 घq. inches for the last three years, is as follows :-


The decrease in out-put is chielly in repriats of old standard sheets the stocks of which are now replenished. The old sheets, while twice the size of the modern sheets, required less retouching or 'duffing' than is required for modern sheets in colours.

There has been some increase in the proportion of intricate coloured maps prepared by the method of duffing for colours, to which the ligher cost may be ascribed in part ; it is also partly due to the fact that the majority of the staff of negative retouchers were recruited about 1908-09 and received comparatively low pay while under training.

In the studio an "iron base" camera on an iron stand was introduced and proved most successful in combating vibration. The $30^{\prime \prime} \times 24^{\prime \prime}$ camera was successfully converted by the Mathematical Instrument Office to the same type as the $36^{\prime \prime} \times 36^{\prime \prime}$.

The preparation "Photopake" has supplanted Indian ink as a duffing medium ; it is more expensive but more efficient.

Mr. Taylor continued his experiments with 'three-colour' blocks, and has obtained further good results, in the direction of increased colour-sensitiveness and ligher speed. A set of spectroscopic tests of some well-known commercial dry plates against the office emulsion is in progress.

The process engraving section still suffers from insufficient work. The area of blocks and plates turned out was 9,206 sq. inches, as compared with $15,091 \mathrm{sq}$. inches in 1909-10 and 10,452 sq. inches in 1908-09. The income of this section exceeded its expenditure by Rs. 1,255.

Litho. Branch.-The out-put of map printing fell off a little. In 1908.09 it was $1,506,607$ pulls ; in $1909-10,1,574,180$ and in $1910-11$ only $1,383,147$; no arrears of printing were left over to the next year. One hundred and sixtyfour one-inch sheets were printed, as against 239 in 1909-10; this accounts for part of the decrease. A flat-bed rubber offset machine las been orlered from England.

General.-The total cost of the office which had been decreasing since 1907-08, when it was Rs. 1,88,966, has risen again slightly. For 1910-11 it has been Rs. $1,64,193$, or deducting the pay of non-gazetted officers fon September which should rightly fall in 1911-12, Rs. 1,54,639, an increaso of Rs. 145 compared with the corresponding figures for 1909-10.

## APPENDIX.

## LIST OF SURVEY OF INDIA PUBLICATIONS.

Publications marked * can be obtained from the Superintendent, Trigonometrical Surveys, Dehra Dún.
" $"+, " \quad "$ the Officer in charge, Map Record \& Issue Office, 13, Wood Street, " " $\pm$ " " the Officer in charge, Mathematical Instrument Office, 15, Wood Street 9 Calcutta.
Remaining publications are either' out of "print or are not available for issue.

# aCCOONT OF THE OPERATIONS OF THE GREAT TRIGONOMETRICAL SURVEY OF INDIA'. 

## Price Rupees $10-8$ per volume, except where otherwise stated.

Volome I. The Standards of Measure and the Base-Lines, also an Introductory Account of the early Operations of the Survey, cluring the period of 1800-1830. By Colonel J. T. Walker, R.E., F.R.S., etc., ete., Superintendent of the Survey. Dehra Dún, 1870 (out of print).
Do.
II. History and General Description of the Principal Triangulation, and of its Reduction. By Colonel J. T. Walker, C.B., R.E., F.R.S., etc., etc., Surveyor-(reneral of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1879 (out of print).
Do.
III. The Principal Triangulation, the Base-Line Figures, the Karáchi Longitudinal, N. W. Himalaya, and the Great Indus Series of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., etc., etc., Superintendent of the Trigonometrical Survey, and his Assistants. Dehra Dún, 1873 (out of print).
IV. The Principal Triangulation, the Great Arc-Section $24^{\circ}-30^{\circ}$, Rahún, Gurhégarh and Jogi-Tila Meridional Series and the Sutlej Series of the North-West Quadrilateral. By Colonel.J. T. Walker, R.E., F.R.S., etc., etc., Superinteudent of the Trigonometrical S'urvey, and his Assistants. Dehra Dún, I876.*
IVA. General Description of the Principal Triangalation of the Jodhpore and the Eastern Sind Meridional Series of the. North-West Quadrilateral, with the Details of their Reduction and the Final Results. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel C. T. Maig, R.D., Officiating Deputy Surveyor-Gencral, in charge, and published under the orders of Colonel G. C. DePríe, S.C., Surveyor-General of India. Dehra Dún, 1886."
V. Details of the Pendulum Operations by Captains.J. P. Basevi, R.E., and W. J. Heaviside, R.E., and of their Reduction. Prepared under the directions of Major-General J. T. Walker, C.B., R.E., F.R.S., etc., etc., Surveyor-General of India and Superintendent of the Trigonometrical Survey. Dehra Dún and Calcutta, 1879.*
VI. The Principal Triangulation of the South-East Quadrilateral, including the Great Arc-Section $18^{\circ}$ to $24^{\circ}$, the East Coast Series, the Calcutta and the Bider Longitudinal Series, the Jabalpur and the Biláspur Meridional Series, and the details of their Simultaneous Reduction. Preparcd under the directions of Major-General J. T. Walker, C.B., R.E., F.R.S., etc., etc., SurveyorGeneral of India and Superintendent of the Trigonometrical Survey. Dehra Dun, 1880 (out of print).
VII. General Description of the Principal Triangulation of the Nort-East Quadrilateral, inclucling the Simultaneous Reduction and the Details of five of the component Series, the North-East Longitudinal, the Budhon Meridional, the Rangir Meridional, the Amua Meridional, and tho Karara Meridional. Prepared under the directions of Lieutenant-General J. T. I'alker, C.B., R.E., F.h.s., etc., etc., Surveyor-General of India and Superintendent of the Trigonometrical Survey. Dehra Dún, 1882.*
VIII. Details of the Principal Triangulation of eleren of the component Series of the North-East Quadrilateral, including the following Series; the Gurwáni Meridional, the Gora Meridional. the Huríáong Meridional, the Chendwár Meridional, the North Parásnáth Meridional, the North Malúncha Meridional, the Calcutta Meridional, the East Calcutta Longitudinal, the Brahmaputrat Meridional, the Eastern Frontier-Section $23^{\circ}$ to $26^{\circ}$, and the Assam Jongitudinal. Prepared under the divections of Licutenant-Gencral J. T. Walker, C.B., R.E., F.R.S., etc., rtc., SurveyorGeneral of India and Superintendent of the Trigonometrical Survey. Dehra Dún, 1882.*
Do.
IX. Electro-Telegraphic Longitude Operations executed during the years 1875-77 and 1880-81. hy Iieutenant-Colonel W. M. Campbell, R.E., nnd Major W. J. Heaviside, R.E. Prepared under the dircctions of Lirutenant-Gencral J. T. Walker, C.B., R.E., F.R.S., etc., etc., Surveyor-Gencrai of India and Superintendent of the Trigonometrical Survey.' Dehra Dún, 1883.*
Do.
X. Electro-Telegraphic Longitude Operations executed during the years 1881-82, 1882 s 8 and 1883-84, by Major G. Strahan, R.E., and Major W. J. Heaviside, R.E. Prepared under the directions of Colonel C. T. Haig, R.L., beputy Surveyor-ieneral, Trigonometrical Branch, and published under

- the orders of Colonel II. R. Thuillier, R.E., Surveyor-General of India. Dehra Dún, 1887."

Do.

Do.
Colonel G. Stahan, R.E., Deputy Surveyor-General, Trigonometrical Branch, and pubhithed
under the orders of Coloneln. R. Thuiller, R.E., Surveyor-Gencral of India. Dehra Dún, 1890 .*
XII. General Description of the Principal Trinngulation of tho Southern Trigon, including the Simultaneous Reduction and the lletails of tro of the component Series, the Grent Are MeridiontiSection $8^{\circ}$ to $18^{\circ}$, and the Bombny Longitudinal. Prepared under the diroctions of LicutenantColoncl G. Strahon, R.E., Deputy Surveyor-Gcneral, Trigonometrical Branch, and published under the orders of Colondin. R. Thuillier, R.E., Surveyor-General of India. Dehra Dún, 1 soo."
Do.
XIII. Details of the Principal Triangulation of five of the component Series of the Southora Trigon, intcluding tho following series; the South Konkan Const, the Mangalore Meridional, the Madras Mcridional and Const, tho South-East Coast, and tho Madras Longitudinal. Prepared meler the dircelions of Licutenant-Colonel (i. Strahan, R.E., Deputy Surweyor-icneral, Trigonometrical Hranch, aml pmhlishad under the orders of Coloncl H. R. Thullier, R.E., Surveyor-General of India. Dehri Dún, 1son.*
Do.
XIV. General Desctiption of the Principal Triangulation of tho South-West Quadrilateral. including tho
 of IV. I. Cole, Esq., MI.L., Oficiating Deputy Surveyor-General, Trigonometrical Branch. and pullished under the orders of. Uolohel H. R. Thuillier, R.E., Surveyor-General of India. Dobra Dún, 1890."

Folume

Do. under the orders of Colonel H. R. Thuilier, R.E., Surveyor-General of India. Dehra Dublished
XVI. Details of the Tidal Observations taken during the period from 1873 to 1892 and a Description of the Methods of Reduction. Prepared under the directions of Major S. G. Burrard, R.L., Superinthe dent, Trigonometrical Surveys, and published under the orders of Colonel St. G.E.C. Guperinten-Surveyor-(ieneral of India. Dehra Dún, 1901.*
Do. XVII. Electro-Telegraphic Longitude Operations executed during the years 1894-95-96. The Indo-European Ares from Karachi to Greenwich. Prepared under the directions of Major S. G. Burrard, RéE Superintendent, Trigonometrical Surveys, and published under the orders of Colonel St. G. G. Gore R.L., Surveyor-General of India. Dehrn Dún, 1901.*

Do. XVIII. Astronomical Observations for Latitude made during the period 1885 to 1905 and the Deduced Talues of the Deflections of the Plumb-line. Preparcel under the directions of Lieutenant-Colonel S. Burard, R.E., F.R.S., Superintendent, Trigonometrical Surveys, and published under the orders of Colonel $\mathrm{F}^{\prime}$. Ż. Longe, R.E., Surveyor-General of India. Dehra Dún, 1906.*
Do.
XIX. Levelling of Precision in India (1858 to 190\%). By Coloncl S. G. Burrard, R.E., F.R.S., Superinlem. dent, Trigonometrical Surveys. Dehra Dún, 1910.*
Do. XIXA. Descriptions and Heights of Bench-marks on the Southern Lines of Levelling. Prepared under the directions of Colonel S. G. Burrard, R.E., F.R.S., Superintendent, Trigonometrical Surveys. Dehra Dún, 1910. Price Rs. 5.*
Do.
XIXB. Descriptions and Heights of Bench-marks on the Northern Lines of Levolling. Prepared under ibe directions of Colonel s. G. Burrard, R.E., F.R.S., Superintendent, Trigonometrical Surcys. Dehra Dún, 1910. Price Rs. 5.*

SYNOPSES OF THE RESULTS OF THE OPERATIONS OF THE GREAT TRIGONOMETRICAL SURVEY OF INDIA, COMPRISING DESCRJPTIONS, CO-ORDINATES, ETC., OF THE PRINCIPAL AND SECONDARY STATIONS AND OTHER FIXED POINTS OF THE SEVERAL SERIES OF TRIANGLES.

## Price Rupees 2 per volume, except where otherwise stated.

Volume I. The Great Indus Series, or Series $D$ of the North-West Quadrilateral. By Colonel J. T. Malker, R.E., F.R.S., etc., etc., Superintendent of the Trigonometrical Survcy, and his Assistunts. Dehra Dún, 1874.*' $\dagger$
Do. II. The Great Arc-Section $24^{\circ}$ to $30^{\circ}$, or Series A of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., etc., etc., Superintendent of the S'urvey, and his dssistants. Delira Dún, 1874.* $\dagger$

Do. III. The Karáchi Longitudinal Series, or Series $B$ of the North-West Quadrilateral. By Colonel J.T. W'alker, R.E., F'R.S., etc., etc., Superintendent of the Survey, and his Assistants. Dehra Dún, 1874.* $\dagger$

Do.
IV. The Gurhágarh Meridional Series, or Series $F$ of the North-West Quadrilateral. $B_{y}$ Colonel J. $T$. Walker, R.E., F.IP.S., etc., etc., Superintendent of the Survey, and his Assistants. Dehra Dun, 1875.* $\dagger$

Da.
V. The Rahún Meriodional Series, or Series $E$ of the North-West Quadrilateral. By Colonel J. T. Walker, R.L., F.R.S., etc., etc., Superintendent of the Survey, and his Assistants. Dehra Dún, 1875.* $\dagger$

Do.
VI. The Jogi-Tila Meridional Series, or Series $G$, and the Sutlej Series, or Series $\Pi$ of the North- West Quadrilateral. By Colonel J.T. Walker, R.E., F.R.S., etc., etc., Superintendent of the Survey, and his Assistants. Dehra Dún, 1875.*†
Do.
VII. The North-West Himalaya Series, or Series $C$ of the North-West Quadrilateral, and the Triangulation of the Kashmir Survey. By Major-General J. T. Walker, C.B., R.E., F.R.S., etc., etc., Surveyor-General of India and Superintendent of the Survey, and his Assistants. Delira Dúu, 1879. (This volume is of great use to mountaineers.)* $\dagger$

Do. VIIA. The Jodhpore Meridional Series and the Eastern Sind Meridional Series of the Nortli-West Quadrilateral. Prepared in the Office of the Trigonometrical Dranch, Survell of lndia, Coloncl C.T. Haig, R.E., Deputy Surveyor-General, in charge, and published under the orders of Colonel R. R. Thuilfier, II,E., Surveyor-Geneval of India. Dehra Dún, 1887.* $\dagger$
Do.
VIII. The Great Arc-Section $18^{\circ}$ to $24^{\circ}$, or Series $A$ of the South-East Quadrilateral. By Colonel J. T. Walker, C.ll., ll.E., F.M.S., etc., etc., Superintendent of the Survey, and his Assistants. Dehra Dún, 1878." $\dagger$
Do. IX. The Jabalpur Meridional Series, or Series $E$ of the South-Enst Quadrilateral. By Coloncl J. T. Walker, C.B., R.E., F.R.S., etc., efc., Surcyor-General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1878.* $\dagger$
Do.
K. The Bider Longiturlinal Series, or Series $D$ of the South-East Quadrilateral. By Major-General J. T. Walker, U.M., R.E., F.IT.S., etc., etc., 'urveyor-General of India and Superintendent of the Surve!!, and his Assistants. Delura Dún, 1880.* $\dagger$
Do. XI. The Bilispur Meridional Series, or Series F of the South-East Quadrilateral. By Major-Acneral J. T. Walker, C.B., R.E., F.R.S., etc., etc., Surveyor-General of India and Superintendent of tho Survey, and his .1ssistants. Debra Dún, 1880.* $\dagger$
Do.
XII. The Calcutta Iongitudinal Series, or Series $D$ of the South-Enst Quadrilateral. By Major-Geneml J. T. W'alker, C.B., R.E., F.R.S., etc.. ete., Surveyor-General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1880.* $\dagger$
Do.
XIII. Thy East Const Bries, or Series (' of the South-East Quadrilateral. By Major-General J. T. Talker, C.B., R.E., F.R.S., efc., etc., Surveyor-General of India and Supcrintendent of the Survey, and his Assistants. Dehra Dún, 1880.* $\dagger$
Do. XIJA. The South Parasnath Meridional Serics and the South Malímelon Meridjanal Serics of the South Enst (Durdrilatoral. Prepured in the offere of the Trigonometrical branch, suruey of Indit,

 Tha Budlon Meridional Serien, or Serios $J$ of the North-Enst Qundribaternl. By Licutenant-
 dent of the Surves, and his Assistants. ,Dohra Dún, 1883.* $\dagger$

 tendent of the Yurvey, and his Assistants. Duhra Dún, 1883."t.

Volume XVI. The Amma Meridional Series, or Series $L$, and the Karára Meridional Series, or Series $M$ of the North-Fast Quadrilateral. By Lieutenant-General J. T. Walker, U.B., R.E., F.R.S., etc., etc., Surveyor-General of India and Superintendent of the Survey, and his Assisfants. Dehra Dún,
Sutc., efter 1883.* $\dagger$

Do. XVII. ${ }^{\text {s }}$ The Gurwani Meridional Series, or Series $N$, and the Gora Meridional Series, or Series $O$ of the North-East Quadrilateral. By Lieutenant-General J. T. Walker, G.J., IR.E., F'.ll.S., etc., etc., Survepor-General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1883.* $\dagger$

Do. XVIIL. The Hurilaiong Meridional Series, or Series $P$, and the Chendwár Meridional Series, or Series $Q$ of the North-East Quadrilateral. Jy Lieutenant-(ieneral J. T. Wa/ker, G.B., II.E., F.M.S., etc., etc., Surveyor-Gcneral of India and Superintendent of the Survey, and his dssistants. Dehra Dún, 1883.* $\dagger$
Do.
XX. The Calcutta Meridional Series, or Series T, and the Brahmaputra Meridional Series, or Series V of the North-East. Quadrilateral. I'repared by J. B. N. Hennessev, Esq., M.A., F.R.S., etc., etc., Officiating Deputy surveyor-general, in charoe of Trigonometrical Surveys, and his Assistants, and published under the orders of Colonel G. C. DePrée, S.C., Officiating Surveyor-General of India. Delrra Dún, 1883.* $\dagger$
Do. XXI. The East Calcutta Longitudinal Series, or Series $U$, and the Eastern Frontier Series-Section 230 to $26^{\circ}$, or Series $I V$ of the North-East Quadrilateral. Prepared by J. B. N. Fennessey, Ess., M.A., F.R.S., etc., etc., Officiating Deputy Surveyor-General, in charge of Trigonometrical Surveys, and his Assistants, and published under the orders of Colonel G.C. DePrée, S.C., Officiating Surveyor-Gencral of India. Dehra Dún, 1883.* $\dagger$
Do.
XXII. The Assam Valley Triangulation, E. of Meridian $92^{\circ}$, emanating from the Assam Longitudiaal Series, or Series $X$ of the North-East Quadrilateral. Prepared in the Office of the Trigonometrical Branch, Survey of Indir, Colonel ('. Strahan, R.E., Deputy Surveyor-General, in charge, and published under the ouders of Colonel B. R. Thuillier, R.E., Surveyor-General of India. Preliminary Issue. Dehra Dún, 1891 (out of print).
Do.
XXIII. The South Konkan Coast Series, or Series 0 of the Southern Trigon. Prepared in the Offce of the Trigonometrical Branch, Survey of India, Colonel G. Strahan, R.E., Deputy Surveyor-General, in charge, and published under the orders of Colonel H. IL., Thuillier, R.E., Sureyor-General of India. Dehra Dún, 1891.* $\dagger$
Do. XXIV. The Mangalore Meridional Series, or Series $D$ of the Southern Trigon. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel G. Strahan, h.E., Deputy Surveyor-General, in charge, and published under the orders of Colonel H. R. Thuillier, R.E., Surveyor-General of India. Delira Dún, 1891.* $\dagger$
Do. XXV. The South-East Coast Series, or Series $F$ of the Southern Trigon. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel G. Strahan, R.E., Deputy Surveyor-General, in charge, and published under the orders of Colonel H. R. Thuillier, R.E., Survevor-General of India. Dehra Dún, 1891.* $\dagger$
Do. XXVI. The Bombay Longitudinal Series, or Series $B$ of the Southern Trigon. Prepared in the Uffre of the Trigonometrical Branch, Survey of India, Colonel G. Strahan, R.E., Deputy Surveyor-General, in charge, and phblished under the orders of Colonel H. R. Thuillier, R.E., Surveyor-General of India. Dehra Dún, 1892.* $\dagger$
Do. XXVII. The Madras Longitudinal Series, or Series $G$ of the Southern Trigon. Prepared in the Office of the Trigonometrical Branch, Survey of lndia, Colonel (i. Strohnn, R.E., Deputy Swrveyor-Gicneral, in charge, and published under the orders of Colonel H. R. Thuillier, R.E., Surveyor-Gencral of India, Dehra Dún, 1892.* $\dagger$
Do. XXVIII. The Madras Meridional and Const Series, or Series $E$ of the Southern Trigon. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel G. Strahan, M.E., Deputy SurveyorGeneral, in charge, and published under the orders of Colonel H. R. Thuillicr, R.E., SurveyorGeneral of India. Dehra Dún, 1892.* $\dagger$
Do. XXIX. The Great Arc Meridional Series-Section $8^{\circ}$ to $18^{\circ}$, or Series $A$ of the Southern Trigon. Prepared in the Office of the Trigonometrical Branch, Survey of India, Lieutenant-Colonel St. G. C. Gore, R.E., Superintendent, Trigonometrical Surveys, in charge, and published under the orders of Colonel G. Strahan, R.E., Surveyor-Gcneral of India. Dehra Dún, 1899."t
Do. XXX. The Abu Meridional Series, or Series $I$, and the Gujarát Longitudinal Series, or Series $K$ of the South-West Quadrilateral. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel G. Strahan, R.E., Deputy Surveyor-General, in charge, and published under the orders of Colonel H. R. Thuillier, R.E., Surveyor-General of India. Dehra Dún, 1892.* $\dagger$
Do. XXXI. The Khánpisura Meridional Series, or Series $G$ of the South-West Quadrilateral. Prepared in the Office of the Trigonometrical Dranch, Survey of India, Colonel G. Strahan, R.E., Deputy SurveyorGeneral, in charge, and published under the orders of Colonel H. R. Thuillier, R.E., SurveyorGeneral of India. Dehra Dún, 1893.* $\dagger$
Do. XXXII. The Singi Meridional Series, or Series $H$ of tho South-West Quadrilaternl. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel G. Strahan, R.E. Deputy SurreyarGeneral, in charge, and published under the orders of Colonel H. R. Thuillier, R.E., SurveyorGeneral of India. Dehra Dín, 1893.* $\dagger$
Do. XXXIII. The Cutch Coast Series, or Series $L$ of the South-West Quadrilnteral. Prepared in the Offce of the Trigonometrical Branch, Survey of India, Goloncl G. Strahan, R.E., Deputy Surveyor-lieneral, in charge, and published under the orders of Colonel R. R. Thwillier, C.I.E., R.E., SurveyorGeneral of India. Dolm Dun, 1893.* $t$
Do. XXXIV. The Kathińwir Moridiomal Scrics, or Scries $J$ of tho South-West Quadrilaternl. Prepared in the Office of the Trigonomatrical Bronch, Survey of India, Cohonel G. Ntrehan. R.E.Jleputy SumeyorGeneral, in charge, and published under the orders of Colonel II. IS. Thuillier, O.I.E., N.E., Surveyor-(raneral of India. Dehra Dún, 1894." $\dagger$ the directions of Colonel S. G. Ryrrarl, R.E., F.R.S., Suprintendent Trigonometrind Surbeus.
 Dún, 1909. I'rico Its. 5.* $\dagger$

## LEVELLING OF PRECISION IN INDIA. HEIGHTS OF BENCH-MARKS.*

A separate pamphlet has been allotted to each sheet of the $\frac{1}{1000000}$ map.
Price Rupees 2 per pamphlet cxcept where otherwise stated.

| Sheet No. | Latitude. | Longitude. | Revaris. | $\begin{aligned} & \text { Sheet } \\ & \text { No. } \end{aligned}$ | Latitude. | Longitude. | Rbmaneg. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35 | $24^{\circ}-29^{\circ}$ | $64^{\circ}-69^{\circ}$ | Dehrea Dún, 1911. | 57 | $12^{\circ}-16^{\circ}$ | $76^{\circ}-80^{\circ}$ | Debra Dún. In tho preses, |
| 98 | $32^{\circ}-36^{\circ}$ | $68^{\circ}-72^{\circ}$ | ," ", In the press. | 58 | $8{ }^{\circ}-12^{\circ}$ | $76^{\circ}-80^{\circ}$ | " " It the press. |
| 39 | $28^{\circ}-32^{\circ}$ | $68^{\circ}-72^{\circ}$ | , ln the press. | 63 | $24^{\circ}-28^{\circ}$ | $80^{\circ}-84{ }^{\circ}$ | " " 1911. |
| 40 | $24^{\circ}-28^{\circ}$ | $65^{\circ}-72^{\circ}$ | , 1911. | 6.4 | $20^{\circ}-2.4{ }^{\circ}$ | $80^{\circ}-84^{\circ}$ | ", Iu tibe press. |
| 41 | $20^{\circ}-24^{\circ}$ | $63^{\circ}-72^{\circ}$ | , In the press. | 65 | $16^{\circ}-20^{\circ}$ | $80^{\circ}-84^{\circ}$ | , In the press, |
| 43 | $32^{\circ}-36^{\circ}$ | $72^{\circ}-76^{\circ}$ | , In the press. | 66 | $12^{\circ}-16^{\circ}$ | $80^{\circ}-844^{\circ}$ | - ", In the press. |
| 44 | $29^{\circ}-32^{\circ}$ | $722^{\circ}-76^{\circ}$ | " In the press. | 72 | $24^{\circ}-28^{\circ}$ | $84^{\circ}-88^{\circ}$ | " In the press. |
| 45 | $24^{\circ}-28^{\circ}$ | $72^{\circ}-76^{\circ}$ | ," ${ }^{\text {n }}$ the press. | 73 | $20^{\circ}-244^{\circ}$ | $84^{\circ}-88^{\circ}$ | " " In the prose. |
| 46 | $20^{\circ}-2.5^{\circ}$ | $72^{\circ}-76^{\circ}$ | " In the priss. | 74 | $16^{\circ}-20^{\circ}$ | $84^{\circ}-88^{\circ}$ | " In the press. |
| 47 | $16^{\circ}-20^{\circ}$ | $72^{\circ}-76^{\circ}$ | " In the press. | 78 | $24^{\circ}-28^{\circ}$ | $88^{\circ}-922^{\circ}$ | , In the press. |
| 48 | $12^{\circ}-16^{\circ}$ | $72^{\circ}-76^{\circ}$ | " In the press. | 79 | $20^{\circ}-24^{\circ}$ | $8^{88}{ }^{\circ}-92^{\circ}$ | " $\quad$ In the pres. |
| 49 | $88^{\circ}-12^{0}$ | $72{ }^{\circ}-76^{\circ}$ | " 1911. Price Re. 1 | 83 | $24^{\circ}-28^{\circ}$ | $92^{\circ}-96{ }^{\circ}$ | " " In the prese |
| 52 | $32^{\circ}-36^{\circ}$ | $76^{\circ}-80^{\circ}$ | , " In the press. | 84 | $20^{\circ}-24^{\circ}$ | $92^{\circ}-966^{\circ}$ | " $\quad 1011$. |
| 53 | $28^{\circ}-32^{\circ}$ | $76^{\circ}-80^{\circ}$ | " In the press. | 85 | $16^{\circ}-20^{\circ}$ | $92^{\circ}-96^{\circ}$ | " " 1911. |
| 64 | $24^{\circ}-28^{\circ}$ | $76^{\circ}-80^{\circ}$ | " 1911. | 92 | $24^{\circ}-28^{\circ}$ | $96^{\circ}-100^{\circ}$ | " " 1911. |
| 55 | $20^{\circ}-24^{\circ}$ | $76^{\circ}-80^{\circ}$ | " " ln the press. | 93 | $20^{\circ}-24^{\circ}$ $16^{\circ}-20^{\circ}$ | $966^{\circ}-100^{\circ}$ 96 | ", " 1911. |
| 56 | $16^{\circ}-20^{\circ}$ | $76^{\circ}-80^{\circ}$ | " „ In the press. | 94 | $16^{\circ}-20^{\circ}$ | $96^{\circ}-100^{\circ}$ | " $\quad 1911$. |

## professional papers of the survey of india.

## Price Rupee 1 per volume, except where otherwise stated.

No. 1. On the Projection for a Map of India and adjacent Countries on the scale of 1:1000000. By Colonel St. G. C. Gore, R.E. Second Edition, Dehra Dún, 1903.
," 2. Method of measuring Geodetic Bases by means of Metallic Wires. By M. Jäderin. (Trnnslated froun Mémoires Présentés par Divers Savants à l'Académie des Sciences da l'Institut de France). Delira Dún, 1899.
3. Method of measuring Goedetic Bases by means of Colby's Compensated Bars. Compiled by Lieutenant $H_{1}$ Mct. Cowie, R.E. Dehra Dún, 1900.
", 4. Notes on the Calibration of Levels. By Lieutenant E. A. Tandy, LL.E., Dehra Dún, 1900.* $\dagger$
", 5. The Attraction of the Himalaya Mountains upon the Plumb-Line in India. Considerations of rent data. By Major S. ('. Jurrard, R.E. Second Edition. Dehra Dún, 1901. Price Rs. 2.* $\dagger$
" 6. Account of a Determination of the Co-etticients of Expansion of the Wires of the Jäderin Bace-Line Apparatus. By Captain (r. P. Lenox-Conyngham, R.E. Dehra Dún, 1902. $\dagger$
," 7. Miscellaneous. Calrutta, 1903. $\dagger$
(1) On the values of Longitude employed in maps of the Survey of India. (2) Levelling across the Ganges at Damukdia. (3) Experiment to test the increase in the length of a Levelling Staff due to moisture and temperature. (4) Description of a Sun-dial designed or use with tide gavges. (5) Nickel-steel alloys and their application to Geodesy. (Translated from the French.) (6) Theory of electric projectors. (Translated from the French.)
" 8. Experiments made to determine the Temperature Co-eficients of Watson's Magnetographs. By Captain H. A. Denholm Fraser, T1.E. Calcutta, 1905.t
" 9. An Account of the Scientific work of the Survey of India and a Comparison of its progress with that of Foreign Surveys. Prepared for the use of the Survey Committec, 1905, by Lieutenant-Colonel S. G. Burrard, R.E゙., F.M.S. Calcutta, 1905. $\dagger$
" 10. The Pendulum Óperations in India, 1903 to 1907. By Major G. P. Lenox-Conyngham, R.E. Delira Dún, 1908. [rice Tis. 2-8.*
," 11. Observation of Atmospheric Refraction, 1905-09. By H. G. Shaw, Survey of India. Dehra Dún, 1911.
", 12. On the Origin of the Himalaya Mountains. By Colonel S. G. Burrard, C.S.I., R.E., F.R.S. Calculta. In the Press.
, 13. Investigation of the Theory of Isostasy in India. By Major H. L. Crosthwait, R.E. Dehra Dúa: In tho Press.

## HAND-BOOKS OF THE SURVEY OI INDIA.

1. Hand-book of Genoral Instructions for the Survey of India Department. Third Edition. Calcutta, 1000. Price Its. $3 . \dagger$
2. Hand-bools of Professional Instructions for the Trigonometrical Branch, Survey of India Department. Second Edition. Calcutta, 1902. Price Rs. 3. $\dagger$
3. Hnncl-book of Professional Instructions for the Topographical Branch, Survey of Indin. Third Edition. Calcutta, 1005. Price Rs. 3. $\dagger$
4. Anxiliary Taliles to facilitate the calculations of tho Surroy of India. Fourth Edition, revised and extended. Delfra Dún, lgod. Prico Rs. 4 in cloth and calf, or Res. 2 in paper and boards. $\ddagger$
5. Tatile for determining Heights in Trarersing. Dehra Dún, 1898. Prico As. 8."
A. Tables for Graticules of Maps. Tastracts from tho Auxiliary Tables of the Survay of Iudin for the use of Explorers. Duhra Dín, 1910. Drice As. A."
6. Logarithmic Sines and Cosincs to 5 places of decinals. Dohra Dín, 1886. Prico As. 4.*
\&. Tables of distancres in Chains and Links corresponding to n subtense of 20 fuet. Price As. $4 . \dagger$
[^2]
## * MISCELLANEOES PUBLICATIONS OF THE SURYEY OF INDIA.

## (Chiefly for Departmental use only.)

1. Report of the Cartographic Applications of Photography as used in the Topographical Departmente of the Principal States in Central Furope. By Colonel J. Waterhouse. Calcutta, 1870. $\dagger$
2. Report of the Operations connected with the Observation of the Total Solar Eclipse of 6th April 1875 at Camorta in the Nicobar Islands. By Colonel J. Walerhouse. Calcutta, 1875.
3. The application of Photography to the Reproduction of Maps and Plans by the Photo-Mechanical and other Processes. Dy Colonel J. Waterhouse. Calcutta, 1878.
4. Metric Weights and Measures and other Tables. Prepared for the use of the Photographic and Lithographic Ofices, Survey of India, by Colonel J. Waterhouse, B.S.C., Assistant Survpyor-Greneral of India, assisted by W. $\boldsymbol{H}$. Cole, Esq., M..A., and T. Archdale Pope, Esq., Survey of India. Calcutta, 1889 . Price Rs. 1-8.
5. The Practical Notes on Preparation of Drawings for Photographic Reproductions. By Colonel J. Waterhouse. Calcutte, 1890. Price Rs. 2. $\dagger$
6. Catalogue of 249 Stars for the epoch January 1, 1892, from observations by the Great Trigonometrical Survey of India. Dehra Dún, 1893. Price Rs. 2.*
7. Report on Local Attraction in India, 1893-94. By Captain S. G. Burrard, R.E. Calcutta, 1895
8. Instructions for taking Magnetic Observations. By J. E'ccles, M.A. Dehra Dún, 1896. Price Rs. 1-8. .
9. Report on the Recent Determination of the Longitude of Madras. Calcutta, 1897. $\dagger$
10. Report on the Trigonometrical Results of the Earthquake in Assam. Calcutia, 1898. $\dagger$
11. The Total Solar Eclipse, January 22, 1898. Dehra Dún, 1898. Price Rs. 2.* $\dagger$
(1) Report on the observations at Dumraon.
(2) Report on the observation at Pulgaon.
(3) Heport on the observations at Sahdol.
12. Star Charts for Latitude $20^{\circ}$ N. By Colonel J. R. Hobday, I.S.C. Calcutta, 1900. Price Rs. 1-8.t
13. Specimens of the Papers set at Examinations for the Provincial Servioe. Delıra Dún, 1903. Gratis. $\|$
14. Notes on the Theory of Errors of Observation. By J. Eccles, M.A. Dehra Dún, 1903. Price As. 8.*
15. Report on the Identification and Nomenclature of the Himalayan Peaks as seen from Katmandu, Nepald (Hilcutta, 1904. Price Rs. 2. $\dagger$
16. Notes on the use of the Jäderin Base-line Apparatus. Prepared under the direction of Lieutenant-Colonel F. B. Longe, R.E. Dehra Dún, 1904.* $\dagger$
17. The reproduction of Maps and Drawings-a hand-book for the use of Government officials and others who prepare Maps, Plans and other subjects for reproduction in the Photographic and Lithographic office of the Survey
of India. Dy T. A. Pope. Calcutta, 1905. of India. Dy T. A. Pope. Calcutta, 1905.*
18. Rainfall from 1868 to 1903, measured at the G. T. Survey Ofice. Dehra Dún.
19. Notes on the Topographical Survey of the $\frac{1}{50000}$ Sheets of Algeria by the Topographical Section of the "Service Géographique de l'Armée." By Captain W. M. Coldstream, R.E. Calcutta, 1906.t
20. Star Charts for Latitude $30^{\circ}$ N. By Lieutenant-Coloncl S. G. Burrard, R.E., F.R.S. Dehra Dún, 1906. Price Rs. 1-8." $\ddagger$
21. Instructions for the preparation of Maps of the one-inch Standard Sheets, etc. Under the direction of Colonel F. B. Longe, R.E. Simla, 1907.
22. A Sketch of the Geography and Geolagy of the Himalaya Mountains and Tibet. By Colonel S. G. Burrard, R.E., F.R.S., Superintendent, Trigonometrical Surveys, and Mr. H. H. Hayden, B.A., F.G.S., Superintendent, Geological Survey of India. Calcutta, 1907-08.*

Part I.-The High Peaks of Asia.
" II.-The Principal Mountain Ranges of Asia.
", III.-The Rivers of the Himalaya and Tibet.
" IV.-The Geology of the Himalaya. Lrice Hs. 2 per part.
23. Notes on the Drawing of New Standard Maps. By Major W. M. Coldstream, R.E. Calcutta, 1908. $\dagger$
24. Routes in the Western Himalayas, Kashmir, etc. By Licutenant-Coloncl T. G. Montgomerie, R.E., F.R.S., F.R.G.S. Third Edition. Revised and Corrected. Dehra Dún, 1909. Price Rs. $1-8 .{ }^{*} \dagger$
25. On a Simplification of the Computations relating to Rectangular Co-ordinates. By J. Eccles, M.A., Officiating Superintendent, Trigonometrical Survess. Dehra Dún, 1011.*
26. Notes on the Use of Thermoneters, Barometers and Eypsometers with Tables for the Computation of Beights. By J. de Graaff IIuntir, M.A. Dehra Dún, 1911.*
27. Report on Rubber Offset Printing for Maps. By Major W. W. Coldstream, R.E. Calcutta 1911.t
28. Notes on Printing Papers suitable for Maps and on Whatman Drawing Puper. By Major W. M. Coldstream, H.E. Calcutta, 1911.t
20. Report on the Working of the Light Field Litho Press (Experinental) in November and December 1910 mith Appendices. $D_{y}$ Licutenant A. A. Chase, R.E. Calcutta, 1911.†
(1) Notes on Some of the Methods of Reproduction suitable for the Field.
(2) Suggested Equipment Tables for tho Light lield Litho Press (Experimental).
30. Note on a Change of the $A$ xes of the Terrestrial Spheroid in relation to the Triangulntion of the G. T. Survey of India. $B_{!}, I$. de (iraoff $B_{u n t e r, ~ M . i l . ~ D e h r a ~ D u ́ n: ~ I n ~ t h e ~ P r e s s . ~}^{\text {I }}$
31. Miseeflaneous Papers relntiag to the Measurement of Geodetic Bases by Jiaderin Invar Apparatus. Pehra Dún: In tho I'ress.

## REPORTS ON EXPLORATIONS. $\dagger$

Priee Rupees $1-s$ per volume.

1. Report on the Explorations in Great Tibet and Mougolia, mado by $4-K$, in $18: 9-82$. Dehra Dín, 1891.
2. Report on tho Trans-Eimalisan Explorations during 1, 667.

| 3. | $"$ | $"$ | $"$ | $"$ | $"$ | 1868. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4. | $n$ | $"$ | $"$ | $"$ | ,$"$ | 1860. |
| 6. | $"$ | $"$ | - | $"$ | $"$ | $"$ |
| 6. | 1870. |  |  |  |  |  |
|  | $n$ | $"$ | $"$ | $"$ | $"$ | $1875-76$ and 1878. |

## 7. Report on the Explorations of : -

(a) Lama Serap Gyatsho, 1856-68,
(b) Explorer K-P., 1880-94,
(c) Lama U. G., 1883,
(d) Explorer R. N., 1885-86,
(e) Explorer P. A., 1885-86,
in Sikkim, Blutan and Tibet. Dehra Dún, 1889.
8. Report on the Explorations in Nepal and Tibet by Explorer M-H. (Season 1885-86.) Dehra Dún, 1887.
9. Explorations on the Tsang-Po in 1880-84, by Explorer Kinthup. Dehra Dún, 1911.

## CATALOGUE OF SCIENTIFIC BOOKS, ETC., ETC.

1. Catalogue of Books in the Head-Quarters Library, Calcutta. 1901.
2. Catalogue of Maps published by the Survey of India. Calcutta, 1910, Price Re. 1. $\dagger$
3. Price List of Mathematical Instrument Office. Calcutta, 1907. Gratis.f
4. Catalogue of Scientific Books and Subjects in the Library of the Trigonometrical Survey Office. Delira Dún, 1908. Price Re. 1.
5. Catalogue of Books in the Library of the Trigonometrical Survey Office. Dehra Dún, 1911. Price Re. 1.*

# ANNUAL GENERAL REPORTS ON THE OPERATIONS OF THE SURVEY OF INDIA. $\dagger$ <br> Price of each volume from 1878 to 1900 Rs. 9. <br> ," , , ,, 1901 to 1911 ,, 2. 

## EXTRACTS FROM NARRATIVE REPORTS OF THE SURVEY OF INDIA. $\dagger$

Price Rupes $1-8$ per volume.

1. 1900-01. Recent Improvements in Photo-Zincography. G. T. Triangulation, Upper Burma. Latitude Operations. Experimental Base Measurement with Jäderin Apparatus. Magnetic Survey. Tidal and Levelling Report. Topography in Upper Burma. Caloutta, 1903.
2. 1901-02. G. T. Triangulation, Upper Burma. Latitude Operations. Magnetic Survey. Tidal and Levelling Report. Topography in Upper Burma. Topography in Sind. Topography in the Punjab. Calcutta, 1904.
3. 1902-03. Principal Triangulation, Opper Hurma. Topography, Uppor Burma. Topography, Shan States. Survey of the Sámbhar Lake. Latitude Operations. Tidal and Levelling Operations. Magnetic Survey. Introduction of the Contract System of Parment in Traverse Surveys. Traversing with the Subtense Bar. Compilatiou and Reproduction of Thána Maps. Calcutta, 1905.
4. 190.3-04. The Magnetic Survey of India. Pendulum Operations. Tidal and Levelling Operations. Astronomical Azimuths. Utilisation of old Traverse Data for Modern Surveys in the United Provinces of Agra and Oudh. Identification of Snow Peaks in Nepal. Topographical Surveys in Sind. Notes on Town and Municipal Survers Notes on Riverain Survers in the Punjab. Calcutta, 1900.
5. 1904-05. The Magnetic Survey of India. Pendulum Operations. Tidal and Levelling Operations. Triangulstion in Baluchistan. Survey Operations with the Somaliland Field Force. Calcutta, 1907.
6. 1905-06. The Magnetic Survey of India. Pendulum Operations. Tidal and Levelling Operations. Extract from the Narrative Report of No. 11 Party. Calcutta, 1908.
7. 1906-07. The Magnetic Survey of Jndia. Penclulum Operations. Tidal and Levelling Operations. Triangulation in Baluchistan. Astronomical Latitudes. Topographical Surveys in Karenni. Extract from the Narrative Report of No. 11 Party. Calcutta, 1009.
8. 1907-08. The Magnetic Survey of India. Tidal and Levelling Operations. Astronomical Latitudes. Pondulum Operations. Extract from the Narrative Report of No. 11 Party, Calcutta, 1910.
9. 1908-99. The Magnetic Survey of India. Tidal and Levellinǵ Operations. Pendulum Operations. Triangulation in India. Calcutta, 1911.

## RECORDS OF THE SURVEY OF INDIA. $\dagger$

Price Rupees 4 per volume.
Volume I, 1902-10. Topographical Surves. Triangulation. Levelling. Geodetic Survey. Magnetic Surves. Tidpl Operations. Physiographical Changes. Calcutta, 1912.

Volume $1 I$, 1910-11. Topographical Survey. Triangulation. Tidal and Levelling. Geodetic Survey. Magnetic Survoy. Reproducing offices. Calcutta, 1912.

## GURVEY PUBLICATIONS OTHER THAN THOSE PDBLISHED BY THE SORVEY OF INDIA.

1. An Account of the Mcasuramont of an Are of the Moridian botwenn tho parallels of $180 \quad 3$ and $21^{\circ} \mathrm{i}^{\prime}$. Iny ('nptain Gcorge Evereat, of the Bengal Artillery, F.R.S., etc. Published by the Authority of the Hon. East India Company. London, 1830 .
2. An Account "f the Mcasuroment of two Anctions of tho Moridional Are of Indin, bounded by the parallels of
 ond his Assistants. I'rinted by order of the Gourt of Directors, of the ILon. East India'lompany. London, 1847.
3. A Momoir on the Indian Surveys. By Clements Il. Markham. I'rinted by order of Mer Ilajesty's Secritury of State for India in Council. London, 1871.
4. A Memoir on the Iudian Surveys. By Clements H. Markham, O.B., F.R.S. Printed by order of Her Majesty's Secretary of State for India in C'ouncil. Second Edition. London, 1878.
5. A Memdir on the Indian Surveys, 1875-1890. By Charles E. D. Black. Printed and published by order of Her Majesty's Secretary of State for India in Council. London, 1891.
6. (a) A Manual of Surveying for India, detailing the mode of operations on the Revenue Surveys in Bengal od the North-Western Provinces. Compled by Captains $\boldsymbol{R}$. Smyth and $\boldsymbol{H}$. L. Thuillier, Bengal Artillery. Preparea for the usc of the Survey Department and published by the Authority of the Government of India. Calcutta, 1851.
(b) A Manual of Surveying for India, detailing the mode of operations on the Revenue Surveye in Bengal and the North-Western Provinces. Compiled by Captains $R$. Smyth and $H$. L. Thuillier, Benoal Artillery. Prepared for the use of the Survey Department, and published under the Authority of the Government of India. Second Edition. London, 1855.
(c) A Manual of Surveying for India, detailing the mode of operations on the Trigonometrical, Topographical and Revenue Surveys of India. Compiled by Colonel R. L. Thuillicr, C.S.I., F.R.S., l'.R.A.S., F.R.G.S., etc., Royal artillery, and Lieutenant-Colonel R. Smyth, late Bengal Artillery. Prepared for the use of the Survey Department of indin. and published under the Authority of the Government of India. Third Edition, revised and enlarged. Calcutta, 1875.

[^0]:    * Vido Profossional paper No. 5, page 50.
    $\dagger$ If, as thero is reason to believo (vido Phil. Trana. Sories A, Vol. 205, pago 313) the plumb line at Kalionpur, the station of origin of the triangulation, is subject to a southerly deteotion of about $6^{\prime \prime}$, then all the geodetic latitudes must be diminished by this quantity, and the values of ( $\mathbf{A}-\mathrm{G}$ ) given ou page ( 26 ) will become
    
    that ie to eny, southerly doflections will be indicated at all the stations except Niwh. This emphasises the dis. cord botwoen the observed resultes and those whioh a calculation of the effeots of the visible masses would lead to.

[^1]:    -     - a
    +235 of line 29.

[^2]:    
    IV-Trnwome and its Computation. $\dagger$
    " IX.-Fownt Surwes and Maps.t
    ", X-heproduction of the sheets of the one-inch Map.t

